Lauther commited on
Commit
a32d0ce
·
verified ·
1 Parent(s): 8d7ccb9

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:3075
8
+ - loss:CoSENTLoss
9
+ widget:
10
+ - source_sentence: last calibrated span
11
+ sentences:
12
+ - 'What is a Calibration Point?
13
+
14
+ A Calibration Point represents a specific data entry in a calibration process,
15
+ comparing an expected reference value to an actual measured value. These points
16
+ are fundamental in ensuring measurement accuracy and identifying deviations.
17
+
18
+
19
+ Key Aspects of Calibration Points:
20
+
21
+ - Calibration Report Association: Each calibration point belongs to a specific
22
+ calibration report, linking it to a broader calibration procedure.
23
+
24
+ - Reference Values: Theoretical or expected values used as a benchmark for measurement
25
+ validation.
26
+
27
+ - Measured Values: The actual recorded values during calibration, reflecting the
28
+ instrument’s response.
29
+
30
+ - Errors: The difference between reference and measured values, indicating possible
31
+ measurement inaccuracies.
32
+
33
+ Calibration points are essential for evaluating instrument performance, ensuring
34
+ compliance with standards, and maintaining measurement reliability.'
35
+ - 'What is Equipment?
36
+
37
+ An Equipment represents a physical device that may be used within a measurement
38
+ system. Equipment can be active or inactive and is classified by type, such as
39
+ transmitters, thermometers, or other measurement-related devices.
40
+
41
+
42
+ Key Aspects of Equipment:
43
+
44
+ - Serial Number: A unique identifier assigned to each equipment unit for tracking
45
+ and reference.
46
+
47
+ - Current State: Indicates whether the equipment is currently in use (ACT) or
48
+ inactive (INA).
49
+
50
+ - Associated Equipment Type: Defines the category of the equipment (e.g., transmitter,
51
+ thermometer), allowing classification and management.
52
+
53
+ Equipment plays a critical role in measurement systems, ensuring accuracy and
54
+ reliability in data collection and processing.'
55
+ - 'What is an Equipment Tag?
56
+
57
+ An Equipment Tag is a unique identifier assigned to equipment that is actively
58
+ installed and in use within a measurement system. It differentiates between equipment
59
+ in general (which may be in storage or inactive) and equipment that is currently
60
+ operational in a system.
61
+
62
+
63
+ Key Aspects of Equipment Tags:
64
+
65
+ - Equipment-Tag: A distinct label or identifier that uniquely marks the equipment
66
+ in operation.
67
+
68
+ - Equipment ID: Links the tag to the corresponding equipment unit.
69
+
70
+ - Belonging Measurement System: Specifies which measurement system the tagged
71
+ equipment is part of.
72
+
73
+ - Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer),
74
+ aiding in organization and system integration.
75
+
76
+ The Equipment Tag is essential for tracking and managing operational equipment
77
+ within a measurement system, ensuring proper identification, monitoring, and maintenance.'
78
+ - source_sentence: transmitter calibration record
79
+ sentences:
80
+ - 'What are historical report values?
81
+
82
+ These represent the recorded data points within flow computer reports. Unlike
83
+ the report index, which serves as a reference to locate reports, these values
84
+ contain the actual measurements and calculated data stored in the historical records.
85
+
86
+
87
+ Flow computer reports store two types of data values:
88
+
89
+
90
+ - **Hourly data values**: Contain measured or calculated values (e.g., operational
91
+ minutes, alarms set, etc.) recorded on an hourly basis.
92
+
93
+ - **Daily data values**: Contain measured or calculated values (e.g., operational
94
+ minutes, alarms set, etc.) recorded on a daily basis.
95
+
96
+ Each value is directly linked to its respective report index, ensuring traceability
97
+ to the original flow computer record. These values maintain their raw integrity,
98
+ providing a reliable source for analysis and validation.'
99
+ - 'What is a Flow Computer Firmware?
100
+
101
+ A flow computer firmware is a software component that defines the functionality
102
+ and behavior of a flow computer.
103
+
104
+
105
+ 🔹 Key Characteristics:
106
+
107
+
108
+ Each firmware version (e.g., F407, FB107, EMED-010) is linked to a specific flow
109
+ computer model.
110
+
111
+ Firmware versions can have a status indicating whether they are active or inactive.
112
+
113
+ They determine how the flow computer processes measurements, calculations, and
114
+ system operations.
115
+
116
+ 📌 Database Tip: When querying firmware information, ensure the firmware version
117
+ is matched with the correct flow computer type for accurate results.'
118
+ - 'What is an Uncertainty Curve Point?
119
+
120
+ An Uncertainty Curve Point represents a data point used to construct the uncertainty
121
+ curve of a measurement system. These curves help analyze how measurement uncertainty
122
+ behaves under different flow rate conditions, ensuring accuracy and reliability
123
+ in uncertainty assessments.
124
+
125
+
126
+ Key Aspects of an Uncertainty Curve Point:
127
+
128
+ - Uncertainty File ID: Links the point to the specific uncertainty dataset, ensuring
129
+ traceability.
130
+
131
+ Equipment Tag ID: Identifies the equipment associated with the uncertainty measurement,
132
+ crucial for system validation.
133
+
134
+ - Uncertainty Points: Represent uncertainty values recorded at specific conditions,
135
+ forming part of the overall uncertainty curve.
136
+
137
+ - Flow Rate Points: Corresponding flow rate values at which the uncertainty was
138
+ measured, essential for evaluating performance under varying operational conditions.
139
+
140
+ These points are fundamental for generating uncertainty curves, which are used
141
+ in calibration, validation, and compliance assessments to ensure measurement reliability
142
+ in industrial processes.'
143
+ - source_sentence: measurement systems
144
+ sentences:
145
+ - 'What is a Calibration Record?
146
+
147
+ A Calibration Record documents the calibration process of a specific equipment
148
+ tag, ensuring that its measurements remain accurate and reliable. Calibration
149
+ is a critical process in maintaining measurement precision and compliance with
150
+ standards.
151
+
152
+
153
+ Key Aspects of a Calibration Record:
154
+
155
+ - Calibration Date: The exact date when the calibration was performed, crucial
156
+ for tracking maintenance schedules.
157
+
158
+ - Certification Number: A unique identifier for the calibration certificate, providing
159
+ traceability and verification of compliance.
160
+
161
+ - Range Values: The minimum and maximum measurement values covered during the
162
+ calibration process.
163
+
164
+ - Calibration Status: Indicates whether the calibration was approved or saved
165
+ for further review.
166
+
167
+ - Associated Units: Specifies the measurement units used in calibration (e.g.,
168
+ °C, psi).
169
+
170
+ - Associated Equipment Tag ID: Links the calibration record to a specific equipment
171
+ tag, ensuring traceability of measurement instruments.
172
+
173
+ Calibration records play a fundamental role in quality assurance, helping maintain
174
+ measurement integrity and regulatory compliance.'
175
+ - 'What is a flow computer?
176
+
177
+ A flow computer is a device used in measurement engineering. It collects analog
178
+ and digital data from flow meters and other sensors.
179
+
180
+
181
+ Key features of a flow computer:
182
+
183
+ - It has a unique name, firmware version, and manufacturer information.
184
+
185
+ - It is designed to record and process data such as temperature, pressure, and
186
+ fluid volume (for gases or oils).'
187
+ - 'What is a Measured Magnitude Value?
188
+
189
+ A Measured Magnitude Value represents a recorded physical measurement of a variable
190
+ within a monitored fluid. These values are essential for tracking system performance,
191
+ analyzing trends, and ensuring accurate monitoring of fluid properties.
192
+
193
+
194
+ Key Aspects of a Measured Magnitude Value:
195
+
196
+ - Measurement Date: The timestamp indicating when the measurement was recorded.
197
+
198
+ - Measured Value: The actual numeric result of the recorded physical magnitude.
199
+
200
+ - Measurement System Association: Links the measured value to a specific measurement
201
+ system responsible for capturing the data.
202
+
203
+ - Variable Association: Identifies the specific variable (e.g., temperature, pressure,
204
+ flow rate) corresponding to the recorded value.
205
+
206
+ Measured magnitude values are crucial for real-time monitoring, historical analysis,
207
+ and calibration processes within measurement systems.'
208
+ - source_sentence: measurement system tag
209
+ sentences:
210
+ - 'What is a Meter Stream?
211
+
212
+ A Meter Stream represents a measurement system configured within a flow computer.
213
+ It serves as the interface between the physical measurement system and the computational
214
+ processes that record and analyze flow data.
215
+
216
+
217
+ Key Aspects of a Meter Stream:
218
+
219
+ - Status: Indicates whether the meter stream is active or inactive.
220
+
221
+ - Measurement System Association: Links the meter stream to a specific measurement
222
+ system, ensuring that the data collected corresponds to a defined physical setup.
223
+
224
+ - Flow Computer Association: Identifies the flow computer responsible for managing
225
+ and recording the measurement system''s data.
226
+
227
+ Why is a Meter Stream Important?
228
+
229
+ A **meter stream** is a critical component in flow measurement, as it ensures
230
+ that the measurement system is correctly integrated into the flow computer for
231
+ accurate monitoring and reporting. Since each flow computer can handle multiple
232
+ meter streams, proper configuration is essential for maintaining data integrity
233
+ and traceability.'
234
+ - 'What is an Equipment Tag?
235
+
236
+ An Equipment Tag is a unique identifier assigned to equipment that is actively
237
+ installed and in use within a measurement system. It differentiates between equipment
238
+ in general (which may be in storage or inactive) and equipment that is currently
239
+ operational in a system.
240
+
241
+
242
+ Key Aspects of Equipment Tags:
243
+
244
+ - Equipment-Tag: A distinct label or identifier that uniquely marks the equipment
245
+ in operation.
246
+
247
+ - Equipment ID: Links the tag to the corresponding equipment unit.
248
+
249
+ - Belonging Measurement System: Specifies which measurement system the tagged
250
+ equipment is part of.
251
+
252
+ - Equipment Type Name: Classifies the equipment (e.g., transmitter, thermometer),
253
+ aiding in organization and system integration.
254
+
255
+ The Equipment Tag is essential for tracking and managing operational equipment
256
+ within a measurement system, ensuring proper identification, monitoring, and maintenance.'
257
+ - 'What is a measurement system?
258
+
259
+ **Measurement systems** are essential components in industrial measurement and
260
+ processing. They are identified by a unique **Tag** and are associated with a
261
+ specific **installation** and **fluid type**. These systems utilize different
262
+ **measurement technologies**, including **differential (DIF)** and **linear (LIN)**,
263
+ depending on the application. Measurement systems can be classified based on their
264
+ **application type**, such as **fiscal** or **custody transfer**. '
265
+ - source_sentence: uncertainty points
266
+ sentences:
267
+ - 'What is a Calibration Point?
268
+
269
+ A Calibration Point represents a specific data entry in a calibration process,
270
+ comparing an expected reference value to an actual measured value. These points
271
+ are fundamental in ensuring measurement accuracy and identifying deviations.
272
+
273
+
274
+ Key Aspects of Calibration Points:
275
+
276
+ - Calibration Report Association: Each calibration point belongs to a specific
277
+ calibration report, linking it to a broader calibration procedure.
278
+
279
+ - Reference Values: Theoretical or expected values used as a benchmark for measurement
280
+ validation.
281
+
282
+ - Measured Values: The actual recorded values during calibration, reflecting the
283
+ instrument’s response.
284
+
285
+ - Errors: The difference between reference and measured values, indicating possible
286
+ measurement inaccuracies.
287
+
288
+ Calibration points are essential for evaluating instrument performance, ensuring
289
+ compliance with standards, and maintaining measurement reliability.'
290
+ - 'What is a Meter Stream?
291
+
292
+ A Meter Stream represents a measurement system configured within a flow computer.
293
+ It serves as the interface between the physical measurement system and the computational
294
+ processes that record and analyze flow data.
295
+
296
+
297
+ Key Aspects of a Meter Stream:
298
+
299
+ - Status: Indicates whether the meter stream is active or inactive.
300
+
301
+ - Measurement System Association: Links the meter stream to a specific measurement
302
+ system, ensuring that the data collected corresponds to a defined physical setup.
303
+
304
+ - Flow Computer Association: Identifies the flow computer responsible for managing
305
+ and recording the measurement system''s data.
306
+
307
+ Why is a Meter Stream Important?
308
+
309
+ A **meter stream** is a critical component in flow measurement, as it ensures
310
+ that the measurement system is correctly integrated into the flow computer for
311
+ accurate monitoring and reporting. Since each flow computer can handle multiple
312
+ meter streams, proper configuration is essential for maintaining data integrity
313
+ and traceability.'
314
+ - 'What is a Fluid?
315
+
316
+ A Fluid is the substance measured within a measurement system. It can be a gas
317
+ or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification
318
+ of fluids is essential for ensuring measurement accuracy, regulatory compliance,
319
+ and operational efficiency. By identifying fluids correctly, the system applies
320
+ the appropriate measurement techniques, processing methods, and reporting standards.'
321
+ datasets:
322
+ - Lauther/measuring-embeddings-v4
323
+ pipeline_tag: sentence-similarity
324
+ library_name: sentence-transformers
325
+ ---
326
+
327
+ # SentenceTransformer
328
+
329
+ This is a [sentence-transformers](https://www.SBERT.net) model trained on the [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
330
+
331
+ ## Model Details
332
+
333
+ ### Model Description
334
+ - **Model Type:** Sentence Transformer
335
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
336
+ - **Maximum Sequence Length:** 512 tokens
337
+ - **Output Dimensionality:** 1024 dimensions
338
+ - **Similarity Function:** Cosine Similarity
339
+ - **Training Dataset:**
340
+ - [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4)
341
+ <!-- - **Language:** Unknown -->
342
+ <!-- - **License:** Unknown -->
343
+
344
+ ### Model Sources
345
+
346
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
347
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
348
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
349
+
350
+ ### Full Model Architecture
351
+
352
+ ```
353
+ SentenceTransformer(
354
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
355
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
356
+ (2): Normalize()
357
+ )
358
+ ```
359
+
360
+ ## Usage
361
+
362
+ ### Direct Usage (Sentence Transformers)
363
+
364
+ First install the Sentence Transformers library:
365
+
366
+ ```bash
367
+ pip install -U sentence-transformers
368
+ ```
369
+
370
+ Then you can load this model and run inference.
371
+ ```python
372
+ from sentence_transformers import SentenceTransformer
373
+
374
+ # Download from the 🤗 Hub
375
+ model = SentenceTransformer("Lauther/measuring-embeddings-v4.3")
376
+ # Run inference
377
+ sentences = [
378
+ 'uncertainty points',
379
+ 'What is a Fluid?\nA Fluid is the substance measured within a measurement system. It can be a gas or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification of fluids is essential for ensuring measurement accuracy, regulatory compliance, and operational efficiency. By identifying fluids correctly, the system applies the appropriate measurement techniques, processing methods, and reporting standards.',
380
+ 'What is a Calibration Point?\nA Calibration Point represents a specific data entry in a calibration process, comparing an expected reference value to an actual measured value. These points are fundamental in ensuring measurement accuracy and identifying deviations.\n\nKey Aspects of Calibration Points:\n- Calibration Report Association: Each calibration point belongs to a specific calibration report, linking it to a broader calibration procedure.\n- Reference Values: Theoretical or expected values used as a benchmark for measurement validation.\n- Measured Values: The actual recorded values during calibration, reflecting the instrument’s response.\n- Errors: The difference between reference and measured values, indicating possible measurement inaccuracies.\nCalibration points are essential for evaluating instrument performance, ensuring compliance with standards, and maintaining measurement reliability.',
381
+ ]
382
+ embeddings = model.encode(sentences)
383
+ print(embeddings.shape)
384
+ # [3, 1024]
385
+
386
+ # Get the similarity scores for the embeddings
387
+ similarities = model.similarity(embeddings, embeddings)
388
+ print(similarities.shape)
389
+ # [3, 3]
390
+ ```
391
+
392
+ <!--
393
+ ### Direct Usage (Transformers)
394
+
395
+ <details><summary>Click to see the direct usage in Transformers</summary>
396
+
397
+ </details>
398
+ -->
399
+
400
+ <!--
401
+ ### Downstream Usage (Sentence Transformers)
402
+
403
+ You can finetune this model on your own dataset.
404
+
405
+ <details><summary>Click to expand</summary>
406
+
407
+ </details>
408
+ -->
409
+
410
+ <!--
411
+ ### Out-of-Scope Use
412
+
413
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
414
+ -->
415
+
416
+ <!--
417
+ ## Bias, Risks and Limitations
418
+
419
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
420
+ -->
421
+
422
+ <!--
423
+ ### Recommendations
424
+
425
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
426
+ -->
427
+
428
+ ## Training Details
429
+
430
+ ### Training Dataset
431
+
432
+ #### measuring-embeddings-v4
433
+
434
+ * Dataset: [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) at [1e3ca2c](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4/tree/1e3ca2c224ad58d1cc57b797997231e22154e471)
435
+ * Size: 3,075 training samples
436
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
437
+ * Approximate statistics based on the first 1000 samples:
438
+ | | sentence1 | sentence2 | score |
439
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------|
440
+ | type | string | string | float |
441
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.55 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 80 tokens</li><li>mean: 180.22 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>min: 0.07</li><li>mean: 0.21</li><li>max: 0.95</li></ul> |
442
+ * Samples:
443
+ | sentence1 | sentence2 | score |
444
+ |:--------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
445
+ | <code>last calibrated span</code> | <code>What are historical report values?<br>These represent the recorded data points within flow computer reports. Unlike the report index, which serves as a reference to locate reports, these values contain the actual measurements and calculated data stored in the historical records.<br><br>Flow computer reports store two types of data values:<br><br>- **Hourly data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on an hourly basis.<br>- **Daily data values**: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on a daily basis.<br>Each value is directly linked to its respective report index, ensuring traceability to the original flow computer record. These values maintain their raw integrity, providing a reliable source for analysis and validation.</code> | <code>0.1</code> |
446
+ | <code>flow computer configuration</code> | <code>What is a Measurement Type?<br>Measurement types define the classification of measurements used within a system based on their purpose and regulatory requirements. These types include **fiscal**, **appropriation**, **operational**, and **custody** measurements. <br><br>- **Fiscal measurements** are used for tax and regulatory reporting, ensuring accurate financial transactions based on measured quantities. <br>- **Appropriation measurements** track resource allocation and ownership distribution among stakeholders. <br>- **Operational measurements** support real-time monitoring and process optimization within industrial operations. <br>- **Custody measurements** are essential for legal and contractual transactions, ensuring precise handover of fluids between parties. <br><br>These classifications play a crucial role in compliance, financial accuracy, and operational efficiency across industries such as oil and gas, water management, and energy distribution. </code> | <code>0.1</code> |
447
+ | <code>uncertainty certificate number</code> | <code>What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.</code> | <code>0.1</code> |
448
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
449
+ ```json
450
+ {
451
+ "scale": 20.0,
452
+ "similarity_fct": "pairwise_cos_sim"
453
+ }
454
+ ```
455
+
456
+ ### Evaluation Dataset
457
+
458
+ #### measuring-embeddings-v4
459
+
460
+ * Dataset: [measuring-embeddings-v4](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4) at [1e3ca2c](https://huggingface.co/datasets/Lauther/measuring-embeddings-v4/tree/1e3ca2c224ad58d1cc57b797997231e22154e471)
461
+ * Size: 659 evaluation samples
462
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
463
+ * Approximate statistics based on the first 659 samples:
464
+ | | sentence1 | sentence2 | score |
465
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
466
+ | type | string | string | float |
467
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.63 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 80 tokens</li><li>mean: 186.36 tokens</li><li>max: 406 tokens</li></ul> | <ul><li>min: 0.07</li><li>mean: 0.2</li><li>max: 0.9</li></ul> |
468
+ * Samples:
469
+ | sentence1 | sentence2 | score |
470
+ |:-----------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
471
+ | <code>measurement system details</code> | <code>What is an Uncertainty Composition?<br>An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.<br><br>Key Aspects of an Uncertainty Component:<br>- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.<br>- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.<br>- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.<br>Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.</code> | <code>0.15</code> |
472
+ | <code>measurement system tag EMED-3102-02-010</code> | <code>What is a report index or historic index?<br>Indexes represent the recorded reports generated by flow computers, classified into two types: <br>- **Hourly reports Index**: Store data for hourly events.<br>- **Daily reports Index**: Strore data for daily events.<br><br>These reports, also referred to as historical data or flow computer historical records, contain raw, first-hand measurements directly collected from the flow computer. The data has not been processed or used in any calculations, preserving its original state for analysis or validation.<br><br>The index is essential for locating specific values within the report.</code> | <code>0.24</code> |
473
+ | <code>static pressure</code> | <code>What is a Meter Stream?<br>A Meter Stream represents a measurement system configured within a flow computer. It serves as the interface between the physical measurement system and the computational processes that record and analyze flow data.<br><br>Key Aspects of a Meter Stream:<br>- Status: Indicates whether the meter stream is active or inactive.<br>- Measurement System Association: Links the meter stream to a specific measurement system, ensuring that the data collected corresponds to a defined physical setup.<br>- Flow Computer Association: Identifies the flow computer responsible for managing and recording the measurement system's data.<br>Why is a Meter Stream Important?<br>A **meter stream** is a critical component in flow measurement, as it ensures that the measurement system is correctly integrated into the flow computer for accurate monitoring and reporting. Since each flow computer can handle multiple meter streams, proper configuration is essential for maintaining data integrity and traceability.</code> | <code>0.1</code> |
474
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
475
+ ```json
476
+ {
477
+ "scale": 20.0,
478
+ "similarity_fct": "pairwise_cos_sim"
479
+ }
480
+ ```
481
+
482
+ ### Training Hyperparameters
483
+ #### Non-Default Hyperparameters
484
+
485
+ - `eval_strategy`: steps
486
+ - `per_device_train_batch_size`: 4
487
+ - `per_device_eval_batch_size`: 4
488
+ - `gradient_accumulation_steps`: 4
489
+ - `learning_rate`: 2e-05
490
+ - `num_train_epochs`: 10
491
+ - `warmup_ratio`: 0.1
492
+
493
+ #### All Hyperparameters
494
+ <details><summary>Click to expand</summary>
495
+
496
+ - `overwrite_output_dir`: False
497
+ - `do_predict`: False
498
+ - `eval_strategy`: steps
499
+ - `prediction_loss_only`: True
500
+ - `per_device_train_batch_size`: 4
501
+ - `per_device_eval_batch_size`: 4
502
+ - `per_gpu_train_batch_size`: None
503
+ - `per_gpu_eval_batch_size`: None
504
+ - `gradient_accumulation_steps`: 4
505
+ - `eval_accumulation_steps`: None
506
+ - `torch_empty_cache_steps`: None
507
+ - `learning_rate`: 2e-05
508
+ - `weight_decay`: 0.0
509
+ - `adam_beta1`: 0.9
510
+ - `adam_beta2`: 0.999
511
+ - `adam_epsilon`: 1e-08
512
+ - `max_grad_norm`: 1.0
513
+ - `num_train_epochs`: 10
514
+ - `max_steps`: -1
515
+ - `lr_scheduler_type`: linear
516
+ - `lr_scheduler_kwargs`: {}
517
+ - `warmup_ratio`: 0.1
518
+ - `warmup_steps`: 0
519
+ - `log_level`: passive
520
+ - `log_level_replica`: warning
521
+ - `log_on_each_node`: True
522
+ - `logging_nan_inf_filter`: True
523
+ - `save_safetensors`: True
524
+ - `save_on_each_node`: False
525
+ - `save_only_model`: False
526
+ - `restore_callback_states_from_checkpoint`: False
527
+ - `no_cuda`: False
528
+ - `use_cpu`: False
529
+ - `use_mps_device`: False
530
+ - `seed`: 42
531
+ - `data_seed`: None
532
+ - `jit_mode_eval`: False
533
+ - `use_ipex`: False
534
+ - `bf16`: False
535
+ - `fp16`: False
536
+ - `fp16_opt_level`: O1
537
+ - `half_precision_backend`: auto
538
+ - `bf16_full_eval`: False
539
+ - `fp16_full_eval`: False
540
+ - `tf32`: None
541
+ - `local_rank`: 0
542
+ - `ddp_backend`: None
543
+ - `tpu_num_cores`: None
544
+ - `tpu_metrics_debug`: False
545
+ - `debug`: []
546
+ - `dataloader_drop_last`: False
547
+ - `dataloader_num_workers`: 0
548
+ - `dataloader_prefetch_factor`: None
549
+ - `past_index`: -1
550
+ - `disable_tqdm`: False
551
+ - `remove_unused_columns`: True
552
+ - `label_names`: None
553
+ - `load_best_model_at_end`: False
554
+ - `ignore_data_skip`: False
555
+ - `fsdp`: []
556
+ - `fsdp_min_num_params`: 0
557
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
558
+ - `fsdp_transformer_layer_cls_to_wrap`: None
559
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
560
+ - `deepspeed`: None
561
+ - `label_smoothing_factor`: 0.0
562
+ - `optim`: adamw_torch
563
+ - `optim_args`: None
564
+ - `adafactor`: False
565
+ - `group_by_length`: False
566
+ - `length_column_name`: length
567
+ - `ddp_find_unused_parameters`: None
568
+ - `ddp_bucket_cap_mb`: None
569
+ - `ddp_broadcast_buffers`: False
570
+ - `dataloader_pin_memory`: True
571
+ - `dataloader_persistent_workers`: False
572
+ - `skip_memory_metrics`: True
573
+ - `use_legacy_prediction_loop`: False
574
+ - `push_to_hub`: False
575
+ - `resume_from_checkpoint`: None
576
+ - `hub_model_id`: None
577
+ - `hub_strategy`: every_save
578
+ - `hub_private_repo`: None
579
+ - `hub_always_push`: False
580
+ - `gradient_checkpointing`: False
581
+ - `gradient_checkpointing_kwargs`: None
582
+ - `include_inputs_for_metrics`: False
583
+ - `include_for_metrics`: []
584
+ - `eval_do_concat_batches`: True
585
+ - `fp16_backend`: auto
586
+ - `push_to_hub_model_id`: None
587
+ - `push_to_hub_organization`: None
588
+ - `mp_parameters`:
589
+ - `auto_find_batch_size`: False
590
+ - `full_determinism`: False
591
+ - `torchdynamo`: None
592
+ - `ray_scope`: last
593
+ - `ddp_timeout`: 1800
594
+ - `torch_compile`: False
595
+ - `torch_compile_backend`: None
596
+ - `torch_compile_mode`: None
597
+ - `dispatch_batches`: None
598
+ - `split_batches`: None
599
+ - `include_tokens_per_second`: False
600
+ - `include_num_input_tokens_seen`: False
601
+ - `neftune_noise_alpha`: None
602
+ - `optim_target_modules`: None
603
+ - `batch_eval_metrics`: False
604
+ - `eval_on_start`: False
605
+ - `use_liger_kernel`: False
606
+ - `eval_use_gather_object`: False
607
+ - `average_tokens_across_devices`: False
608
+ - `prompts`: None
609
+ - `batch_sampler`: batch_sampler
610
+ - `multi_dataset_batch_sampler`: proportional
611
+
612
+ </details>
613
+
614
+ ### Training Logs
615
+ <details><summary>Click to expand</summary>
616
+
617
+ | Epoch | Step | Training Loss | Validation Loss |
618
+ |:------:|:----:|:-------------:|:---------------:|
619
+ | 0.8322 | 160 | 3.0564 | - |
620
+ | 0.8843 | 170 | 2.2963 | - |
621
+ | 0.9363 | 180 | 1.8767 | - |
622
+ | 0.9883 | 190 | 2.8634 | - |
623
+ | 1.0416 | 200 | 2.5195 | - |
624
+ | 1.0936 | 210 | 2.4094 | - |
625
+ | 1.1456 | 220 | 1.5141 | - |
626
+ | 1.1977 | 230 | 2.1366 | - |
627
+ | 1.2497 | 240 | 1.5389 | - |
628
+ | 1.3017 | 250 | 3.8265 | - |
629
+ | 1.3537 | 260 | 1.9989 | - |
630
+ | 1.4057 | 270 | 2.6037 | - |
631
+ | 1.4577 | 280 | 3.898 | - |
632
+ | 1.5098 | 290 | 2.9363 | - |
633
+ | 1.5618 | 300 | 3.3853 | 0.5155 |
634
+ | 1.6138 | 310 | 2.2995 | - |
635
+ | 1.6658 | 320 | 1.3945 | - |
636
+ | 1.7178 | 330 | 3.8312 | - |
637
+ | 1.7698 | 340 | 2.626 | - |
638
+ | 1.8218 | 350 | 1.5451 | - |
639
+ | 1.8739 | 360 | 1.1062 | - |
640
+ | 1.9259 | 370 | 2.6593 | - |
641
+ | 1.9779 | 380 | 1.773 | - |
642
+ | 2.0260 | 390 | 1.3937 | - |
643
+ | 2.0780 | 400 | 2.2228 | - |
644
+ | 2.1300 | 410 | 0.7027 | - |
645
+ | 2.1821 | 420 | 1.5933 | - |
646
+ | 2.2341 | 430 | 2.295 | - |
647
+ | 2.2861 | 440 | 1.042 | - |
648
+ | 2.3381 | 450 | 2.8671 | 0.3661 |
649
+ | 2.3901 | 460 | 1.879 | - |
650
+ | 2.4421 | 470 | 4.0556 | - |
651
+ | 2.4941 | 480 | 2.9677 | - |
652
+ | 2.5462 | 490 | 1.4443 | - |
653
+ | 2.5982 | 500 | 3.2575 | - |
654
+ | 2.6502 | 510 | 1.6124 | - |
655
+ | 2.7022 | 520 | 1.3976 | - |
656
+ | 2.7542 | 530 | 1.3161 | - |
657
+ | 2.8062 | 540 | 2.5047 | - |
658
+ | 2.8583 | 550 | 0.9757 | - |
659
+ | 2.9103 | 560 | 2.1051 | - |
660
+ | 2.9623 | 570 | 2.4919 | - |
661
+ | 3.0104 | 580 | 1.4737 | - |
662
+ | 3.0624 | 590 | 1.3318 | - |
663
+ | 3.1144 | 600 | 1.4474 | 0.4409 |
664
+ | 3.1664 | 610 | 2.3727 | - |
665
+ | 3.2185 | 620 | 0.6234 | - |
666
+ | 3.2705 | 630 | 1.9529 | - |
667
+ | 3.3225 | 640 | 1.5384 | - |
668
+ | 3.3745 | 650 | 1.5913 | - |
669
+ | 3.4265 | 660 | 0.6265 | - |
670
+ | 3.4785 | 670 | 2.1122 | - |
671
+ | 3.5306 | 680 | 1.8046 | - |
672
+ | 3.5826 | 690 | 0.8298 | - |
673
+ | 3.6346 | 700 | 1.4242 | - |
674
+ | 3.6866 | 710 | 1.5808 | - |
675
+ | 3.7386 | 720 | 1.1792 | - |
676
+ | 3.7906 | 730 | 2.7767 | - |
677
+ | 3.8427 | 740 | 1.7814 | - |
678
+ | 3.8947 | 750 | 0.5374 | 0.3227 |
679
+ | 3.9467 | 760 | 1.493 | - |
680
+ | 3.9987 | 770 | 1.8282 | - |
681
+ | 4.0468 | 780 | 1.6991 | - |
682
+ | 4.0988 | 790 | 0.7883 | - |
683
+ | 4.1508 | 800 | 0.841 | - |
684
+ | 4.2029 | 810 | 0.923 | - |
685
+ | 4.2549 | 820 | 0.3459 | - |
686
+ | 4.3069 | 830 | 2.3643 | - |
687
+ | 4.3589 | 840 | 0.9606 | - |
688
+ | 4.4109 | 850 | 0.7961 | - |
689
+ | 4.4629 | 860 | 1.749 | - |
690
+ | 4.5150 | 870 | 0.6536 | - |
691
+ | 4.5670 | 880 | 1.668 | - |
692
+ | 4.6190 | 890 | 0.5919 | - |
693
+ | 4.6710 | 900 | 1.2476 | 0.3258 |
694
+ | 4.7230 | 910 | 1.422 | - |
695
+ | 4.7750 | 920 | 0.8616 | - |
696
+ | 4.8270 | 930 | 0.2323 | - |
697
+ | 4.8791 | 940 | 2.7915 | - |
698
+ | 4.9311 | 950 | 0.6705 | - |
699
+ | 4.9831 | 960 | 1.7353 | - |
700
+ | 5.0312 | 970 | 1.7646 | - |
701
+ | 5.0832 | 980 | 1.4311 | - |
702
+ | 5.1352 | 990 | 0.7089 | - |
703
+ | 5.1873 | 1000 | 1.631 | - |
704
+ | 5.2393 | 1010 | 1.8051 | - |
705
+ | 5.2913 | 1020 | 0.5302 | - |
706
+ | 5.3433 | 1030 | 0.7428 | - |
707
+ | 5.3953 | 1040 | 0.5852 | - |
708
+ | 5.4473 | 1050 | 0.737 | 0.3283 |
709
+ | 5.4993 | 1060 | 1.492 | - |
710
+ | 5.5514 | 1070 | 0.9142 | - |
711
+ | 5.6034 | 1080 | 1.8887 | - |
712
+ | 5.6554 | 1090 | 1.1079 | - |
713
+ | 5.7074 | 1100 | 0.6984 | - |
714
+ | 5.7594 | 1110 | 1.7174 | - |
715
+ | 5.8114 | 1120 | 0.9411 | - |
716
+ | 5.8635 | 1130 | 1.286 | - |
717
+ | 5.9155 | 1140 | 2.1944 | - |
718
+ | 5.9675 | 1150 | 1.2478 | - |
719
+ | 6.0156 | 1160 | 0.7935 | - |
720
+ | 6.0676 | 1170 | 1.4886 | - |
721
+ | 6.1196 | 1180 | 1.3375 | - |
722
+ | 6.1717 | 1190 | 2.9167 | - |
723
+ | 6.2237 | 1200 | 0.3903 | 0.2734 |
724
+ | 6.2757 | 1210 | 1.326 | - |
725
+ | 6.3277 | 1220 | 0.3135 | - |
726
+ | 6.3797 | 1230 | 1.0881 | - |
727
+ | 6.4317 | 1240 | 1.5096 | - |
728
+ | 6.4837 | 1250 | 0.5525 | - |
729
+ | 6.5358 | 1260 | 0.3606 | - |
730
+ | 6.5878 | 1270 | 0.9334 | - |
731
+ | 6.6398 | 1280 | 0.5658 | - |
732
+ | 6.6918 | 1290 | 1.5978 | - |
733
+ | 6.7438 | 1300 | 0.4212 | - |
734
+ | 6.7958 | 1310 | 1.7793 | - |
735
+ | 6.8479 | 1320 | 1.5593 | - |
736
+ | 6.8999 | 1330 | 1.6738 | - |
737
+ | 6.9519 | 1340 | 0.3041 | - |
738
+ | 7.0 | 1350 | 0.5286 | 0.2737 |
739
+ | 7.0520 | 1360 | 1.7618 | - |
740
+ | 7.1040 | 1370 | 0.4629 | - |
741
+ | 7.1560 | 1380 | 0.4087 | - |
742
+ | 7.2081 | 1390 | 0.3099 | - |
743
+ | 7.2601 | 1400 | 0.6679 | - |
744
+ | 7.3121 | 1410 | 0.7688 | - |
745
+ | 7.3641 | 1420 | 1.223 | - |
746
+ | 7.4161 | 1430 | 0.8108 | - |
747
+ | 7.4681 | 1440 | 0.24 | - |
748
+ | 7.5202 | 1450 | 0.6616 | - |
749
+ | 7.5722 | 1460 | 1.5255 | - |
750
+ | 7.6242 | 1470 | 1.3865 | - |
751
+ | 7.6762 | 1480 | 0.2771 | - |
752
+ | 7.7282 | 1490 | 0.7809 | - |
753
+ | 7.7802 | 1500 | 0.2114 | 0.2259 |
754
+ | 7.8322 | 1510 | 1.6341 | - |
755
+ | 7.8843 | 1520 | 0.7665 | - |
756
+ | 7.9363 | 1530 | 0.7204 | - |
757
+ | 7.9883 | 1540 | 0.6557 | - |
758
+ | 8.0364 | 1550 | 2.0155 | - |
759
+ | 8.0884 | 1560 | 0.4718 | - |
760
+ | 8.1404 | 1570 | 0.1254 | - |
761
+ | 8.1925 | 1580 | 0.8067 | - |
762
+ | 8.2445 | 1590 | 0.3196 | - |
763
+ | 8.2965 | 1600 | 0.7162 | - |
764
+ | 8.3485 | 1610 | 0.1727 | - |
765
+ | 8.4005 | 1620 | 0.7634 | - |
766
+ | 8.4525 | 1630 | 0.2472 | - |
767
+ | 8.5046 | 1640 | 0.264 | - |
768
+ | 8.5566 | 1650 | 0.5994 | 0.1935 |
769
+ | 8.6086 | 1660 | 0.4445 | - |
770
+ | 8.6606 | 1670 | 0.9039 | - |
771
+ | 8.7126 | 1680 | 0.7927 | - |
772
+ | 8.7646 | 1690 | 0.4908 | - |
773
+ | 8.8166 | 1700 | 0.7486 | - |
774
+ | 8.8687 | 1710 | 1.377 | - |
775
+ | 8.9207 | 1720 | 1.025 | - |
776
+ | 8.9727 | 1730 | 1.1134 | - |
777
+ | 9.0208 | 1740 | 0.271 | - |
778
+ | 9.0728 | 1750 | 1.0931 | - |
779
+ | 9.1248 | 1760 | 0.7956 | - |
780
+ | 9.1769 | 1770 | 1.2794 | - |
781
+ | 9.2289 | 1780 | 0.3901 | - |
782
+ | 9.2809 | 1790 | 0.9033 | - |
783
+ | 9.3329 | 1800 | 0.4934 | 0.1680 |
784
+ | 9.3849 | 1810 | 0.5104 | - |
785
+ | 9.4369 | 1820 | 0.2879 | - |
786
+ | 9.4889 | 1830 | 0.6565 | - |
787
+ | 9.5410 | 1840 | 0.4523 | - |
788
+ | 9.5930 | 1850 | 0.7147 | - |
789
+ | 9.6450 | 1860 | 0.354 | - |
790
+ | 9.6970 | 1870 | 0.277 | - |
791
+ | 9.7490 | 1880 | 0.2066 | - |
792
+ | 9.8010 | 1890 | 0.6588 | - |
793
+ | 9.8531 | 1900 | 0.3789 | - |
794
+ | 9.9051 | 1910 | 0.8525 | - |
795
+ | 9.9571 | 1920 | 0.366 | - |
796
+
797
+ </details>
798
+
799
+ ### Framework Versions
800
+ - Python: 3.11.0
801
+ - Sentence Transformers: 3.4.1
802
+ - Transformers: 4.49.0
803
+ - PyTorch: 2.6.0+cu124
804
+ - Accelerate: 1.4.0
805
+ - Datasets: 3.3.2
806
+ - Tokenizers: 0.21.0
807
+
808
+ ## Citation
809
+
810
+ ### BibTeX
811
+
812
+ #### Sentence Transformers
813
+ ```bibtex
814
+ @inproceedings{reimers-2019-sentence-bert,
815
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
816
+ author = "Reimers, Nils and Gurevych, Iryna",
817
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
818
+ month = "11",
819
+ year = "2019",
820
+ publisher = "Association for Computational Linguistics",
821
+ url = "https://arxiv.org/abs/1908.10084",
822
+ }
823
+ ```
824
+
825
+ #### CoSENTLoss
826
+ ```bibtex
827
+ @online{kexuefm-8847,
828
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
829
+ author={Su Jianlin},
830
+ year={2022},
831
+ month={Jan},
832
+ url={https://kexue.fm/archives/8847},
833
+ }
834
+ ```
835
+
836
+ <!--
837
+ ## Glossary
838
+
839
+ *Clearly define terms in order to be accessible across audiences.*
840
+ -->
841
+
842
+ <!--
843
+ ## Model Card Authors
844
+
845
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
846
+ -->
847
+
848
+ <!--
849
+ ## Model Card Contact
850
+
851
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
852
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/azureuser/projects/deploy/embeddings_deploy/models/hub/models--Lauther--measuring-embeddings-v3/snapshots/9ba5b2e2cbe51cd7350727ed4af3042a44fcb487",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.49.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb07f2c77f77e27528f2652e2526465b9edb467993289b9e8519d8420be80f17
3
+ size 2239607176
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "tokenizer_class": "XLMRobertaTokenizerFast",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "<unk>"
63
+ }