croissantllm_alector

This model is a fine-tuned version of croissantllm/CroissantLLMChat-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
4.4674 1.4815 10 2.7493
2.3361 2.9630 20 1.7841
1.6418 4.4444 30 1.6253
1.5506 5.9259 40 1.5834
1.4118 7.4074 50 1.5230
1.3397 8.8889 60 1.5239
1.2705 10.3704 70 1.4704
1.181 11.8519 80 1.4517
1.1903 13.3333 90 1.4438
1.1721 14.8148 100 1.4429

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Lduignan1/croissantllm_alector

Adapter
(1)
this model