Uploaded model
- Developed by: Lein0618
- License: apache-2.0
- Finetuned from model : llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
How to use
%%capture !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
from unsloth import FastLanguageModel import torch import json
model_name = "Lein0618/llm-jp-3-13b-finetune2"
max_seq_length = 2048 dtype = None load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_name, max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = "your_token", ) FastLanguageModel.for_inference(model)
datasets = [] with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = ""
from tqdm import tqdm
results = [] for dt in tqdm(datasets): input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt.get("task_id", None), "input": input, "output": dt.get("output", prediction)})
with open(f"/content/Lein0618_llm-jp-3-13b-finetune2_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n')
Model tree for Lein0618/llm-jp-3-13b-finetune2
Base model
llm-jp/llm-jp-3-13b