LeoChiuu's picture
Add new SentenceTransformer model.
b59e708 verified
|
raw
history blame
21.5 kB
---
base_model: colorfulscoop/sbert-base-ja
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:53
- loss:CosineSimilarityLoss
widget:
- source_sentence: 黒い タイル 本当に すてきな カウンター 後ろ 働く 人々
sentences:
- 男性 バレエ 参加 して ます
- 座って いる
- 人々 宝石 働いて ます
- source_sentence: 少年 切り株 座って ます
sentences:
- ストリート ワーカー 保護 着用 して ませ
- 芝生 エリア 交流 ます
- 切り 倒した 切り株 座って いる 少年
- source_sentence: 多い 景色 見て
sentences:
- 見て いる ます
- 肖像 描いて ます
- バイカー 使って 自転車 さらに 進め ます
model-index:
- name: SentenceTransformer based on colorfulscoop/sbert-base-ja
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: custom arc semantics data jp
type: custom-arc-semantics-data-jp
metrics:
- type: cosine_accuracy
value: 0.6363636363636364
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.3379952907562256
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7777777777777777
name: Cosine F1
- type: cosine_f1_threshold
value: 0.3379952907562256
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.7
name: Cosine Precision
- type: cosine_recall
value: 0.875
name: Cosine Recall
- type: cosine_ap
value: 0.619629329004329
name: Cosine Ap
- type: dot_accuracy
value: 0.6363636363636364
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 187.5118865966797
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7777777777777777
name: Dot F1
- type: dot_f1_threshold
value: 187.5118865966797
name: Dot F1 Threshold
- type: dot_precision
value: 0.7
name: Dot Precision
- type: dot_recall
value: 0.875
name: Dot Recall
- type: dot_ap
value: 0.6946293290043289
name: Dot Ap
- type: manhattan_accuracy
value: 0.6363636363636364
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 598.9317626953125
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7777777777777777
name: Manhattan F1
- type: manhattan_f1_threshold
value: 598.9317626953125
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.7
name: Manhattan Precision
- type: manhattan_recall
value: 0.875
name: Manhattan Recall
- type: manhattan_ap
value: 0.619629329004329
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6363636363636364
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 27.118305206298828
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7777777777777777
name: Euclidean F1
- type: euclidean_f1_threshold
value: 27.118305206298828
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.7
name: Euclidean Precision
- type: euclidean_recall
value: 0.875
name: Euclidean Recall
- type: euclidean_ap
value: 0.619629329004329
name: Euclidean Ap
- type: max_accuracy
value: 0.6363636363636364
name: Max Accuracy
- type: max_accuracy_threshold
value: 598.9317626953125
name: Max Accuracy Threshold
- type: max_f1
value: 0.7777777777777777
name: Max F1
- type: max_f1_threshold
value: 598.9317626953125
name: Max F1 Threshold
- type: max_precision
value: 0.7
name: Max Precision
- type: max_recall
value: 0.875
name: Max Recall
- type: max_ap
value: 0.6946293290043289
name: Max Ap
---
# SentenceTransformer based on colorfulscoop/sbert-base-ja
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [colorfulscoop/sbert-base-ja](https://huggingface.co/colorfulscoop/sbert-base-ja) <!-- at revision ecb8a98cd5176719ff7ab0d770a27420118732cf -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'岩 の 多い 景色 を 見て 二 人',
'何 か を 見て いる 二 人 が い ます 。',
'誰 か が 肖像 画 を 描いて い ます 。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `custom-arc-semantics-data-jp`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6364 |
| cosine_accuracy_threshold | 0.338 |
| cosine_f1 | 0.7778 |
| cosine_f1_threshold | 0.338 |
| cosine_precision | 0.7 |
| cosine_recall | 0.875 |
| cosine_ap | 0.6196 |
| dot_accuracy | 0.6364 |
| dot_accuracy_threshold | 187.5119 |
| dot_f1 | 0.7778 |
| dot_f1_threshold | 187.5119 |
| dot_precision | 0.7 |
| dot_recall | 0.875 |
| dot_ap | 0.6946 |
| manhattan_accuracy | 0.6364 |
| manhattan_accuracy_threshold | 598.9318 |
| manhattan_f1 | 0.7778 |
| manhattan_f1_threshold | 598.9318 |
| manhattan_precision | 0.7 |
| manhattan_recall | 0.875 |
| manhattan_ap | 0.6196 |
| euclidean_accuracy | 0.6364 |
| euclidean_accuracy_threshold | 27.1183 |
| euclidean_f1 | 0.7778 |
| euclidean_f1_threshold | 27.1183 |
| euclidean_precision | 0.7 |
| euclidean_recall | 0.875 |
| euclidean_ap | 0.6196 |
| max_accuracy | 0.6364 |
| max_accuracy_threshold | 598.9318 |
| max_f1 | 0.7778 |
| max_f1_threshold | 598.9318 |
| max_precision | 0.7 |
| max_recall | 0.875 |
| **max_ap** | **0.6946** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 53 training samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 53 samples:
| | text1 | text2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 14 tokens</li><li>mean: 35.36 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 21.33 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~38.10%</li><li>1: ~61.90%</li></ul> |
* Samples:
| text1 | text2 | label |
|:---------------------------------------------------------------------------------------|:----------------------------------------------------------|:---------------|
| <code>薄紫 色 の ドレス と 明るい ホット ピンク の 靴 を 着た 女性 が 、 水 と コーヒー を 飲んで テーブル に 座って い ます 。</code> | <code>ブラインド デート の 女性 が 座って 、 デート が 現れる の を 待ち ます 。</code> | <code>1</code> |
| <code>トラック を 自転車 で 走る 人々 の グループ 。</code> | <code>自転車 の 挑戦 に 勝とう と する 人々 の グループ 。</code> | <code>1</code> |
| <code>野球 の 試合 中 に 基地 を 走る 野球 選手 の シャープリー 。</code> | <code>Sharp ley は ゲーム で プレイ して い ます 。</code> | <code>0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### csv
* Dataset: csv
* Size: 53 evaluation samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 53 samples:
| | text1 | text2 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 19 tokens</li><li>mean: 39.64 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 25.27 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~27.27%</li><li>1: ~72.73%</li></ul> |
* Samples:
| text1 | text2 | label |
|:----------------------------------------------------------------------------------------------------------|:------------------------------------------------|:---------------|
| <code>岩 の 多い 景色 を 見て 二 人</code> | <code>何 か を 見て いる 二 人 が い ます 。</code> | <code>0</code> |
| <code>白い ヘルメット と オレンジ色 の シャツ 、 ジーンズ 、 白い トラック と オレンジ色 の パイロン の 前 に 反射 ジャケット を 着た 金髪 の ストリート ワーカー 。</code> | <code>ストリート ワーカー は 保護 具 を 着用 して い ませ ん 。</code> | <code>1</code> |
| <code>白い 帽子 を かぶった 女性 が 、 鮮やかな 色 の 岩 の 風景 を 描いて い ます 。 岩 層 自体 が 背景 に 見え ます 。</code> | <code>誰 か が 肖像 画 を 描いて い ます 。</code> | <code>1</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `learning_rate`: 2e-05
- `num_train_epochs`: 15
- `warmup_ratio`: 0.4
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 15
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.4
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data-jp_max_ap |
|:-----:|:----:|:-------------:|:------:|:-----------------------------------:|
| 1.0 | 6 | 0.2963 | 0.3111 | 0.6821 |
| 2.0 | 12 | 0.2833 | 0.3096 | 0.7238 |
| 3.0 | 18 | 0.2568 | 0.3050 | 0.7238 |
| 4.0 | 24 | 0.2177 | 0.2958 | 0.7238 |
| 5.0 | 30 | 0.1797 | 0.2826 | 0.6946 |
| 6.0 | 36 | 0.1419 | 0.2765 | 0.6509 |
| 7.0 | 42 | 0.1057 | 0.2954 | 0.6509 |
| 8.0 | 48 | 0.0815 | 0.3165 | 0.6509 |
| 9.0 | 54 | 0.0664 | 0.3199 | 0.6509 |
| 10.0 | 60 | 0.0497 | 0.3140 | 0.6509 |
| 11.0 | 66 | 0.0402 | 0.3081 | 0.6321 |
| 12.0 | 72 | 0.0346 | 0.3072 | 0.6946 |
| 13.0 | 78 | 0.0293 | 0.3066 | 0.6946 |
| 14.0 | 84 | 0.0302 | 0.3076 | 0.6946 |
| 15.0 | 90 | 0.0287 | 0.3078 | 0.6946 |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->