metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.87
- name: Precision
type: precision
value: 0.8753213453213452
- name: Recall
type: recall
value: 0.87
- name: F1
type: f1
value: 0.8641214483158217
pipeline_tag: audio-classification
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5488
- Accuracy: 0.87
- Precision: 0.8753
- Recall: 0.87
- F1: 0.8641
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
2.1729 | 1.0 | 113 | 2.0581 | 0.63 | 0.6670 | 0.63 | 0.5957 |
1.6552 | 2.0 | 226 | 1.3957 | 0.7 | 0.6894 | 0.7 | 0.6857 |
1.0753 | 3.0 | 339 | 0.9783 | 0.75 | 0.8154 | 0.75 | 0.7277 |
0.8519 | 4.0 | 452 | 0.8087 | 0.75 | 0.8120 | 0.75 | 0.7380 |
0.8623 | 5.0 | 565 | 0.7393 | 0.75 | 0.7622 | 0.75 | 0.7373 |
0.506 | 6.0 | 678 | 0.6861 | 0.81 | 0.8449 | 0.81 | 0.7997 |
0.2052 | 7.0 | 791 | 0.6505 | 0.81 | 0.8254 | 0.81 | 0.8024 |
0.1583 | 8.0 | 904 | 0.5365 | 0.86 | 0.8770 | 0.86 | 0.8545 |
0.0699 | 9.0 | 1017 | 0.5488 | 0.87 | 0.8753 | 0.87 | 0.8641 |
0.0177 | 10.0 | 1130 | 0.6330 | 0.83 | 0.8312 | 0.83 | 0.8245 |
0.0071 | 11.0 | 1243 | 0.6268 | 0.84 | 0.8410 | 0.84 | 0.8348 |
0.0746 | 12.0 | 1356 | 0.6051 | 0.87 | 0.8732 | 0.87 | 0.8675 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1