classifier-posterior-glare-removal

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the classifier_posterior_glare_removal_256_crop_s1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4990
  • Accuracy: 0.8593

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.626 0.8065 50 0.5622 0.7582
0.4848 1.6129 100 0.5952 0.6675
0.2195 2.4194 150 0.5258 0.8325
0.1967 3.2258 200 0.5911 0.7960
0.2945 4.0323 250 0.4966 0.8300
0.1866 4.8387 300 0.5222 0.8350
0.1211 5.6452 350 0.5328 0.8426
0.1666 6.4516 400 0.5545 0.8426
0.0737 7.2581 450 0.5327 0.8526
0.0314 8.0645 500 0.5208 0.8526
0.0329 8.8710 550 0.5773 0.8489
0.0497 9.6774 600 0.5994 0.8489

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
19
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Lez94/classifier-posterior-glare-removal

Finetuned
(1776)
this model