nhi_heldout-speaker-exp_ERG513_mms-1b-nhi-adapterft

This model is a fine-tuned version of facebook/mms-1b-all on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5175
  • Wer: 0.4501
  • Cer: 0.1170

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.0957 1.5267 200 0.5731 0.5762 0.1479
0.8701 3.0534 400 0.4845 0.52 0.1291
0.7821 4.5802 600 0.5054 0.5208 0.1310
0.7153 6.1069 800 0.4817 0.5086 0.1291
0.6852 7.6336 1000 0.4694 0.4853 0.1235
0.6552 9.1603 1200 0.4521 0.4787 0.1207
0.6257 10.6870 1400 0.4525 0.4734 0.1182
0.6497 12.2137 1600 0.4622 0.4715 0.1200
0.594 13.7405 1800 0.4412 0.4673 0.1178
0.5867 15.2672 2000 0.4599 0.4734 0.1221
0.5646 16.7939 2200 0.4545 0.4776 0.1208
0.5537 18.3206 2400 0.4279 0.4636 0.1158
0.548 19.8473 2600 0.4570 0.4731 0.1190
0.5116 21.3740 2800 0.4562 0.4758 0.1200
0.5098 22.9008 3000 0.4432 0.4699 0.1200
0.4814 24.4275 3200 0.4426 0.4662 0.1171
0.5041 25.9542 3400 0.4434 0.4630 0.1179
0.4514 27.4809 3600 0.4475 0.4577 0.1180
0.4677 29.0076 3800 0.4632 0.4623 0.1208
0.4644 30.5344 4000 0.4630 0.4670 0.1230
0.4682 32.0611 4200 0.4570 0.4570 0.1164
0.4469 33.5878 4400 0.4636 0.4625 0.1190
0.4338 35.1145 4600 0.4612 0.4641 0.1203
0.4288 36.6412 4800 0.4486 0.4448 0.1158
0.4282 38.1679 5000 0.4652 0.4623 0.1184
0.4118 39.6947 5200 0.4561 0.4522 0.1151
0.4247 41.2214 5400 0.4638 0.4630 0.1178
0.3904 42.7481 5600 0.4648 0.4585 0.1169
0.3936 44.2748 5800 0.4752 0.4707 0.1220
0.3738 45.8015 6000 0.4774 0.4633 0.1189
0.3796 47.3282 6200 0.4664 0.4453 0.1135
0.3582 48.8550 6400 0.4672 0.4511 0.1141
0.3639 50.3817 6600 0.4698 0.4461 0.1144
0.3675 51.9084 6800 0.4732 0.4607 0.1182
0.3376 53.4351 7000 0.4615 0.4387 0.1129
0.3422 54.9618 7200 0.4700 0.4416 0.1156
0.339 56.4885 7400 0.4668 0.4495 0.1140
0.3414 58.0153 7600 0.4864 0.4548 0.1175
0.3265 59.5420 7800 0.4934 0.4623 0.1196
0.3239 61.0687 8000 0.4799 0.4469 0.1154
0.3121 62.5954 8200 0.4899 0.4498 0.1178
0.3294 64.1221 8400 0.4845 0.4577 0.1174
0.3026 65.6489 8600 0.4892 0.4472 0.1158
0.3029 67.1756 8800 0.4817 0.4466 0.1151
0.2874 68.7023 9000 0.4873 0.4567 0.1171
0.2842 70.2290 9200 0.5043 0.4509 0.1181
0.293 71.7557 9400 0.4934 0.4498 0.1149
0.2647 73.2824 9600 0.5036 0.4485 0.1171
0.2818 74.8092 9800 0.5119 0.4564 0.1201
0.2805 76.3359 10000 0.5022 0.4522 0.1164
0.2758 77.8626 10200 0.5001 0.4498 0.1164
0.2599 79.3893 10400 0.5056 0.4485 0.1176
0.264 80.9160 10600 0.5161 0.4548 0.1194
0.2537 82.4427 10800 0.5161 0.4503 0.1176
0.257 83.9695 11000 0.5145 0.4485 0.1164
0.2527 85.4962 11200 0.5155 0.4525 0.1175
0.2524 87.0229 11400 0.5301 0.4503 0.1169
0.2376 88.5496 11600 0.5232 0.4538 0.1182
0.2431 90.0763 11800 0.5172 0.4509 0.1182
0.2452 91.6031 12000 0.5085 0.4485 0.1162
0.2389 93.1298 12200 0.5173 0.4501 0.1173
0.2382 94.6565 12400 0.5149 0.4495 0.1176
0.2318 96.1832 12600 0.5208 0.4493 0.1175
0.2257 97.7099 12800 0.5200 0.4495 0.1165
0.2319 99.2366 13000 0.5175 0.4501 0.1170

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.4.0
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for Lguyogiro/nhi_heldout-speaker-exp_ERG513_mms-1b-nhi-adapterft

Finetuned
(247)
this model

Evaluation results