nhi_heldout-speaker-exp_GGN505_mms-1b-nhi-adapterft

This model is a fine-tuned version of facebook/mms-1b-all on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5168
  • Wer: 0.3564
  • Cer: 0.0963

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.0628 1.3072 200 0.6601 0.6203 0.1672
0.8658 2.6144 400 0.5592 0.5526 0.1436
0.7815 3.9216 600 0.5179 0.5286 0.1345
0.7157 5.2288 800 0.5074 0.5108 0.1281
0.6834 6.5359 1000 0.4945 0.4801 0.1259
0.6746 7.8431 1200 0.4748 0.4699 0.1229
0.6337 9.1503 1400 0.4826 0.4655 0.1198
0.6218 10.4575 1600 0.4772 0.4584 0.1205
0.5927 11.7647 1800 0.4740 0.4490 0.1155
0.5927 13.0719 2000 0.4637 0.4293 0.1121
0.5776 14.3791 2200 0.4621 0.4423 0.1153
0.5432 15.6863 2400 0.4752 0.4289 0.1131
0.5259 16.9935 2600 0.4516 0.3966 0.1059
0.5152 18.3007 2800 0.4510 0.4210 0.1109
0.4901 19.6078 3000 0.4602 0.4191 0.1095
0.4926 20.9150 3200 0.4607 0.4057 0.1068
0.4742 22.2222 3400 0.4569 0.3856 0.1037
0.4813 23.5294 3600 0.4538 0.4163 0.1080
0.4598 24.8366 3800 0.4672 0.4147 0.1098
0.4418 26.1438 4000 0.4656 0.4013 0.1054
0.4561 27.4510 4200 0.4737 0.4002 0.1054
0.4358 28.7582 4400 0.4560 0.3931 0.1059
0.4343 30.0654 4600 0.4644 0.3954 0.1062
0.4148 31.3725 4800 0.4510 0.3966 0.1072
0.4208 32.6797 5000 0.4687 0.3840 0.1026
0.4208 33.9869 5200 0.4805 0.3856 0.1062
0.4189 35.2941 5400 0.4624 0.3765 0.1032
0.3899 36.6013 5600 0.4741 0.3844 0.1051
0.3835 37.9085 5800 0.4721 0.3876 0.1040
0.4017 39.2157 6000 0.4733 0.3915 0.1056
0.3928 40.5229 6200 0.4644 0.3742 0.1029
0.373 41.8301 6400 0.4628 0.3848 0.1027
0.372 43.1373 6600 0.4805 0.3899 0.1034
0.3473 44.4444 6800 0.4637 0.3769 0.1012
0.3419 45.7516 7000 0.4687 0.3753 0.1008
0.3607 47.0588 7200 0.4642 0.3777 0.1007
0.3474 48.3660 7400 0.4610 0.3690 0.0989
0.3464 49.6732 7600 0.4631 0.3757 0.1001
0.3398 50.9804 7800 0.4571 0.3588 0.0982
0.3182 52.2876 8000 0.4868 0.3659 0.0999
0.3158 53.5948 8200 0.4821 0.3718 0.1004
0.3368 54.9020 8400 0.4712 0.3777 0.1015
0.3312 56.2092 8600 0.4918 0.3820 0.1022
0.3175 57.5163 8800 0.4969 0.3761 0.1023
0.3081 58.8235 9000 0.4717 0.3742 0.0996
0.3144 60.1307 9200 0.4901 0.3753 0.1029
0.3085 61.4379 9400 0.4793 0.3655 0.0992
0.3033 62.7451 9600 0.4726 0.3623 0.0985
0.291 64.0523 9800 0.4792 0.3750 0.1015
0.3022 65.3595 10000 0.4942 0.3761 0.1018
0.2949 66.6667 10200 0.5000 0.3809 0.1028
0.2744 67.9739 10400 0.5011 0.3773 0.1010
0.2648 69.2810 10600 0.5171 0.3809 0.1028
0.2793 70.5882 10800 0.5050 0.3738 0.1004
0.2664 71.8954 11000 0.4973 0.3663 0.1000
0.2515 73.2026 11200 0.5010 0.3675 0.1004
0.2421 74.5098 11400 0.5130 0.3560 0.0973
0.2638 75.8170 11600 0.5044 0.3679 0.0995
0.2444 77.1242 11800 0.4933 0.3627 0.0986
0.2399 78.4314 12000 0.4950 0.3620 0.0984
0.2532 79.7386 12200 0.4971 0.3588 0.0974
0.242 81.0458 12400 0.5043 0.3718 0.1012
0.2351 82.3529 12600 0.5112 0.3722 0.0990
0.2344 83.6601 12800 0.4991 0.3651 0.0986
0.2274 84.9673 13000 0.5089 0.3533 0.0959
0.2394 86.2745 13200 0.5069 0.3588 0.0973
0.2336 87.5817 13400 0.5152 0.3631 0.0983
0.2323 88.8889 13600 0.5168 0.3600 0.0975
0.2427 90.1961 13800 0.5017 0.3620 0.0979
0.2296 91.5033 14000 0.5121 0.3596 0.0975
0.2289 92.8105 14200 0.5106 0.3545 0.0956
0.2153 94.1176 14400 0.5133 0.3584 0.0959
0.244 95.4248 14600 0.5134 0.3553 0.0959
0.2277 96.7320 14800 0.5166 0.3580 0.0964
0.2224 98.0392 15000 0.5136 0.3568 0.0963
0.2218 99.3464 15200 0.5168 0.3564 0.0963

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.4.0
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
965M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Lguyogiro/nhi_heldout-speaker-exp_GGN505_mms-1b-nhi-adapterft

Finetuned
(242)
this model

Evaluation results