hubert-base-ls960-v2-finetuned-gtzan

This model is a fine-tuned version of facebook/hubert-base-ls960 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6560
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1778 1.0 90 2.1185 0.42
1.7477 2.0 180 1.6950 0.5
1.6626 3.0 270 1.4481 0.49
1.0488 4.0 360 1.2952 0.56
0.9819 5.0 450 1.0239 0.63
0.8553 6.0 540 0.8149 0.75
0.9188 7.0 630 0.9471 0.73
0.5563 8.0 720 0.7414 0.77
0.6793 9.0 810 0.7851 0.78
0.5282 10.0 900 0.6163 0.8
0.3895 11.0 990 0.6667 0.82
0.3037 12.0 1080 0.6157 0.84
0.1647 13.0 1170 0.6485 0.83
0.3331 14.0 1260 0.5609 0.86
0.1695 15.0 1350 0.6393 0.84
0.0968 16.0 1440 0.7537 0.83
0.1928 17.0 1530 0.7043 0.86
0.1281 18.0 1620 0.6077 0.89
0.0482 19.0 1710 0.7178 0.86
0.1215 20.0 1800 0.6560 0.86

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Lifan-Z/hubert-base-ls960-finetuned-gtzan

Finetuned
(73)
this model

Dataset used to train Lifan-Z/hubert-base-ls960-finetuned-gtzan

Evaluation results