binhcode25's picture
Add new SentenceTransformer model.
2fd3907 verified
|
raw
history blame
1.28 kB
---
library_name: light-embed
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# baai-llm-embedder-onnx
This is the ONNX version of the Sentence Transformers model BAAI/llm-embedder for sentence embedding, optimized for speed and lightweight performance. By utilizing onnxruntime and tokenizers instead of heavier libraries like sentence-transformers and transformers, this version ensures a smaller library size and faster execution. Below are the details of the model:
- Base model: BAAI/llm-embedder
- Embedding dimension: 768
- Max sequence length: 512
- File size on disk: 0.41 GB
This ONNX model consists all components in the original sentence transformer model:
Transformer, Pooling, Normalize
<!--- Describe your model here -->
## Usage (LightEmbed)
Using this model becomes easy when you have [LightEmbed](https://www.light-embed.net) installed:
```
pip install -U light-embed
```
Then you can use the model like this:
```python
from light_embed import TextEmbedding
sentences = ["This is an example sentence", "Each sentence is converted"]
model = TextEmbedding('BAAI/llm-embedder')
embeddings = model.encode(sentences)
print(embeddings)
```
## Citing & Authors
Binh Nguyen / [email protected]