binhcode25's picture
Add new SentenceTransformer model.
3e8c9bf verified
|
raw
history blame
1.72 kB
---
library_name: light-embed
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
---
# sbert-all-MiniLM-L6-v2-onnx
This is the ONNX version of the Sentence Transformers model sentence-transformers/all-MiniLM-L6-v2 for sentence embedding, optimized for speed and lightweight performance. By utilizing onnxruntime and tokenizers instead of heavier libraries like sentence-transformers and transformers, this version ensures a smaller library size and faster execution. Below are the details of the model:
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Embedding dimension: 384
- Max sequence length: 256
- File size on disk: 0.08 GB
- Pooling incorporated: Yes
This ONNX model consists all components in the original sentence transformer model:
Transformer, Pooling, Normalize
<!--- Describe your model here -->
## Usage (LightEmbed)
Using this model becomes easy when you have [LightEmbed](https://pypi.org/project/light-embed/) installed:
```
pip install -U light-embed
```
Then you can use the model using the original model name like this:
```python
from light_embed import TextEmbedding
sentences = ["This is an example sentence", "Each sentence is converted"]
model = TextEmbedding('sentence-transformers/all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
Then you can use the model using onnx model name like this:
```python
from light_embed import TextEmbedding
sentences = ["This is an example sentence", "Each sentence is converted"]
model = TextEmbedding('sbert-all-MiniLM-L6-v2-onnx')
embeddings = model.encode(sentences)
print(embeddings)
```
## Citing & Authors
Binh Nguyen / [email protected]