git-base-pokemon

This model is a fine-tuned version of microsoft/git-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0407
  • Wer Score: 2.1746

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Score
7.3192 2.13 50 4.4908 21.3506
2.2486 4.26 100 0.3526 10.3803
0.1047 6.38 150 0.0321 0.3635
0.0222 8.51 200 0.0298 0.6636
0.0145 10.64 250 0.0286 2.1759
0.0081 12.77 300 0.0321 2.9690
0.004 14.89 350 0.0340 2.2962
0.002 17.02 400 0.0356 2.1837
0.0012 19.15 450 0.0370 3.1501
0.0009 21.28 500 0.0379 2.5821
0.0007 23.4 550 0.0382 2.7995
0.0006 25.53 600 0.0386 2.8318
0.0006 27.66 650 0.0387 2.4541
0.0006 29.79 700 0.0390 2.6404
0.0006 31.91 750 0.0395 2.5614
0.0006 34.04 800 0.0395 2.5317
0.0006 36.17 850 0.0399 2.5886
0.0006 38.3 900 0.0403 2.3829
0.0006 40.43 950 0.0404 2.2937
0.0006 42.55 1000 0.0404 2.2173
0.0006 44.68 1050 0.0406 2.1617
0.0006 46.81 1100 0.0406 2.1669
0.0006 48.94 1150 0.0407 2.1746

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.1
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.