V0224P4
This model is a fine-tuned version of yahma/llama-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7469
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 20
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0963 | 0.13 | 10 | 1.0447 |
0.972 | 0.26 | 20 | 0.9097 |
0.8764 | 0.39 | 30 | 0.8531 |
0.8256 | 0.52 | 40 | 0.8236 |
0.8078 | 0.65 | 50 | 0.8045 |
0.7897 | 0.78 | 60 | 0.7927 |
0.766 | 0.91 | 70 | 0.7827 |
0.7559 | 1.04 | 80 | 0.7754 |
0.725 | 1.17 | 90 | 0.7698 |
0.7408 | 1.3 | 100 | 0.7650 |
0.7293 | 1.43 | 110 | 0.7619 |
0.7198 | 1.55 | 120 | 0.7584 |
0.7106 | 1.68 | 130 | 0.7554 |
0.7208 | 1.81 | 140 | 0.7521 |
0.7247 | 1.94 | 150 | 0.7489 |
0.7002 | 2.07 | 160 | 0.7496 |
0.6782 | 2.2 | 170 | 0.7486 |
0.6905 | 2.33 | 180 | 0.7485 |
0.6826 | 2.46 | 190 | 0.7475 |
0.6851 | 2.59 | 200 | 0.7476 |
0.6874 | 2.72 | 210 | 0.7471 |
0.6846 | 2.85 | 220 | 0.7469 |
0.6864 | 2.98 | 230 | 0.7469 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/V0224P4
Base model
yahma/llama-7b-hf