|
--- |
|
license: other |
|
base_model: yahma/llama-7b-hf |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: V0305O2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# V0305O2 |
|
|
|
This model is a fine-tuned version of [yahma/llama-7b-hf](https://huggingface.co/yahma/llama-7b-hf) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1482 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_steps: 20 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 3.7252 | 0.09 | 10 | 0.2911 | |
|
| 0.1739 | 0.17 | 20 | 0.1561 | |
|
| 0.1571 | 0.26 | 30 | 0.1529 | |
|
| 0.1516 | 0.34 | 40 | 0.1509 | |
|
| 0.1514 | 0.43 | 50 | 0.1507 | |
|
| 0.1564 | 0.51 | 60 | 0.1511 | |
|
| 0.1519 | 0.6 | 70 | 0.1509 | |
|
| 0.1534 | 0.68 | 80 | 0.1493 | |
|
| 0.1492 | 0.77 | 90 | 0.1490 | |
|
| 0.1527 | 0.85 | 100 | 0.1498 | |
|
| 0.1543 | 0.94 | 110 | 0.1491 | |
|
| 0.1504 | 1.02 | 120 | 0.1506 | |
|
| 0.1536 | 1.11 | 130 | 0.1498 | |
|
| 0.1493 | 1.19 | 140 | 0.1504 | |
|
| 0.1526 | 1.28 | 150 | 0.1492 | |
|
| 0.1529 | 1.37 | 160 | 0.1500 | |
|
| 0.1519 | 1.45 | 170 | 0.1490 | |
|
| 0.1491 | 1.54 | 180 | 0.1495 | |
|
| 0.1539 | 1.62 | 190 | 0.1491 | |
|
| 0.153 | 1.71 | 200 | 0.1485 | |
|
| 0.1514 | 1.79 | 210 | 0.1492 | |
|
| 0.154 | 1.88 | 220 | 0.1501 | |
|
| 0.1562 | 1.96 | 230 | 0.1490 | |
|
| 0.1511 | 2.05 | 240 | 0.1491 | |
|
| 0.154 | 2.13 | 250 | 0.1484 | |
|
| 0.1505 | 2.22 | 260 | 0.1489 | |
|
| 0.1492 | 2.3 | 270 | 0.1488 | |
|
| 0.1546 | 2.39 | 280 | 0.1478 | |
|
| 0.1528 | 2.47 | 290 | 0.1476 | |
|
| 0.1516 | 2.56 | 300 | 0.1479 | |
|
| 0.1508 | 2.65 | 310 | 0.1482 | |
|
| 0.1523 | 2.73 | 320 | 0.1482 | |
|
| 0.1501 | 2.82 | 330 | 0.1483 | |
|
| 0.1498 | 2.9 | 340 | 0.1483 | |
|
| 0.151 | 2.99 | 350 | 0.1482 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|