LiukG's picture
End of training
432cff0 verified
---
base_model: AIRI-Institute/gena-lm-bert-large-t2t
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: gut_1024-finetuned-lora-bert-large-t2t
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gut_1024-finetuned-lora-bert-large-t2t
This model is a fine-tuned version of [AIRI-Institute/gena-lm-bert-large-t2t](https://huggingface.co/AIRI-Institute/gena-lm-bert-large-t2t) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4378
- F1: 0.8676
- Mcc Score: 0.6476
- Accuracy: 0.8315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Mcc Score | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:--------:|
| 0.6357 | 0.02 | 100 | 0.5047 | 0.8379 | 0.5616 | 0.7918 |
| 0.5873 | 0.04 | 200 | 1.0646 | 0.6898 | 0.4070 | 0.6829 |
| 0.5661 | 0.05 | 300 | 0.4921 | 0.8386 | 0.5593 | 0.7901 |
| 0.5018 | 0.07 | 400 | 0.4753 | 0.8476 | 0.5791 | 0.7927 |
| 0.5461 | 0.09 | 500 | 0.4841 | 0.8465 | 0.5947 | 0.8074 |
| 0.4555 | 0.11 | 600 | 0.4521 | 0.8580 | 0.6239 | 0.8209 |
| 0.4155 | 0.12 | 700 | 0.4519 | 0.8655 | 0.6386 | 0.8264 |
| 0.438 | 0.14 | 800 | 0.4634 | 0.8539 | 0.6130 | 0.8159 |
| 0.4306 | 0.16 | 900 | 0.4298 | 0.8615 | 0.6232 | 0.8150 |
| 0.4791 | 0.18 | 1000 | 0.4378 | 0.8676 | 0.6476 | 0.8315 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2