metadata
library_name: transformers
tags:
- transformers.js
- tokenizers
Why should you use this and not the tiktoken included in the orignal model?
- This tokenizer is validated with the https://huggingface.co/datasets/xn (all languages) to be encode/decode compatible with dbrx-base tiktoken
- Original tokenizer pad the vocabulary to correct size with
<extra_N>
tokens but encoder never uses them - Original tokenizer use eos as pad token which may confuse trainers to mask out the eos token so model never output eos.
- [NOT FIXED: INVESTIGATING] config.json embedding size of "vocab_size": 100352 does not match 100277
modified from original code @ https://huggingface.co/Xenova/dbrx-instruct-tokenizer
Changes:
1. Remove non-base model tokens
2. Keep/Add `<|pad|>` special token to make sure padding can be differentiated from eos/bos.
3. Expose 15 unused/reserved `<|extra_N|>` for use
# pad token
"100256": {
"content": "<|pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
# 15 unused/reserved extra tokens
"<|extra_0|>": 100261
"<|extra_1|>": 100262
...
"<|extra_14|>": 100275
DBRX Instruct Tokenizer
A 🤗-compatible version of the DBRX Instruct (adapted from databricks/dbrx-instruct). This means it can be used with Hugging Face libraries including Transformers, Tokenizers, and Transformers.js.
Example usage:
Transformers/Tokenizers
from transformers import GPT2TokenizerFast
tokenizer = GPT2TokenizerFast.from_pretrained('Xenova/dbrx-instruct-tokenizer')
assert tokenizer.encode('hello world') == [15339, 1917]
Transformers.js
import { AutoTokenizer } from '@xenova/transformers';
const tokenizer = await AutoTokenizer.from_pretrained('Xenova/dbrx-instruct-tokenizer');
const tokens = tokenizer.encode('hello world'); // [15339, 1917]