metadata
license: apache-2.0
language:
- en
- ja
tags:
- finetuned
library_name: transformers
pipeline_tag: text-generation
Our Models
Model Card for Ninja-v1.0
The Mistral-7B--based Large Language Model (LLM) is an noveldataset fine-tuned version of the Mistral-7B-v0.1
Ninja has the following changes compared to Mistral-7B-v0.1.
- Achieving both high quality Japanese and English generation
- Memory ability that does not forget even after long-context generation
This model was created with the help of GPUs from the first LocalAI hackathon.
We would like to take this opportunity to thank
List of Creation Methods
- Chatvector for multiple models
- Simple linear merging of result models
- Domain and Sentence Enhancement with LORA
- Context expansion
Instruction format
Ninja adopts the prompt format from Vicuna and supports multi-turn conversation. The prompt should be as following:
USER: Hi ASSISTANT: Hello.</s>
USER: Who are you?
ASSISTANT: I am ninja.</s>
Example prompts to improve (Japanese)
BAD:γγγͺγγ―ββγ¨γγ¦ζ―γθγγΎγ
GOOD: γγͺγγ―ββγ§γ
BAD: γγͺγγ―ββγγ§γγΎγ
GOOD: γγͺγγ―ββγγγΎγ
Performing inference
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Local-Novel-LLM-project/Ninja-v1")
tokenizer = AutoTokenizer.from_pretrained("Local-Novel-LLM-project/Ninja-v1")
prompt = "Once upon a time,"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=100, do_sample=True)
generated_text = tokenizer.decode(output)
print(generated_text)
Merge recipe
- WizardLM2 - mistralai/Mistral-7B-v0.1
- Elizezen/Antler-7B - stabilityai/japanese-stablelm-instruct-gamma-7b
- NTQAI/chatntq-ja-7b-v1.0
The characteristics of each model are as follows.
- WizardLM2: High quality multitasking model
- Antler-7B: Model specialized for novel writing
- NTQAI/chatntq-ja-7b-v1.0 High quality Japanese specialized model
Other points to keep in mind
- The training data may be biased. Be careful with the generated sentences.
- Memory usage may be large for long inferences.
- If possible, we recommend inferring with llamacpp rather than Transformers.