TEmA-small
This model is a fine-tuned version of the LaBSE, which is specialized for sentence similarity tasks in Azerbaijan texts. It maps sentences and paragraphs to a 768-dimensional dense vector space, useful for tasks like clustering, semantic search, and more.
Benchmark Results
STSBenchmark | biosses-sts | sickr-sts | sts12-sts | sts13-sts | sts15-sts | sts16-sts | Average Pearson | Model |
---|---|---|---|---|---|---|---|---|
0.8253 | 0.7859 | 0.7924 | 0.8444 | 0.7490 | 0.8141 | 0.7600 | 0.7959 | TEmA-small |
0.7872 | 0.8303 | 0.7801 | 0.7978 | 0.6963 | 0.8052 | 0.7794 | 0.7823 | Cohere/embed-multilingual-v3.0 |
0.7927 | 0.6672 | 0.7758 | 0.8122 | 0.7312 | 0.7831 | 0.7416 | 0.7577 | BAAI/bge-m3 |
0.7572 | 0.8139 | 0.7328 | 0.7646 | 0.6318 | 0.7542 | 0.7092 | 0.7377 | intfloat/multilingual-e5-large-instruct |
0.7252 | 0.7801 | 0.7250 | 0.6725 | 0.7446 | 0.7301 | 0.7454 | 0.7318 | Cohere/embed-multilingual-v2.0 |
0.7485 | 0.7714 | 0.7271 | 0.7170 | 0.6496 | 0.7570 | 0.7255 | 0.7280 | intfloat/multilingual-e5-large |
0.7245 | 0.8237 | 0.6839 | 0.6570 | 0.7125 | 0.7612 | 0.7386 | 0.7288 | OpenAI/text-embedding-3-large |
0.7363 | 0.8148 | 0.7067 | 0.7050 | 0.6535 | 0.7514 | 0.7070 | 0.7250 | sentence-transformers/LaBSE |
0.7376 | 0.7917 | 0.7190 | 0.7441 | 0.6286 | 0.7461 | 0.7026 | 0.7242 | intfloat/multilingual-e5-small |
0.7192 | 0.8198 | 0.7160 | 0.7338 | 0.5815 | 0.7318 | 0.6973 | 0.7142 | Cohere/embed-multilingual-light-v3.0 |
0.6960 | 0.8185 | 0.6950 | 0.6752 | 0.5899 | 0.7186 | 0.6790 | 0.6960 | intfloat/multilingual-e5-base |
0.5830 | 0.2486 | 0.5921 | 0.5593 | 0.5559 | 0.5404 | 0.5289 | 0.5155 | antoinelouis/colbert-xm |
Accuracy Results
- Cosine Distance: 96.63
- Manhattan Distance: 96.52
- Euclidean Distance: 96.57
Usage
from transformers import AutoTokenizer, AutoModel
import torch
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Function to normalize embeddings
def normalize_embeddings(embeddings):
return embeddings / embeddings.norm(dim=1, keepdim=True)
# Sentences we want embeddings for
sentences = [
"Bu xoşbəxt bir insandır",
"Bu çox xoşbəxt bir insandır",
"Bu gün günəşli bir gündür"
]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('LocalDoc/TEmA-small')
model = AutoModel.from_pretrained('LocalDoc/TEmA-small')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = normalize_embeddings(sentence_embeddings)
# Calculate cosine similarities
cosine_similarities = torch.nn.functional.cosine_similarity(
sentence_embeddings[0].unsqueeze(0),
sentence_embeddings[1:],
dim=1
)
print("Cosine Similarities:")
for i, score in enumerate(cosine_similarities):
print(f"Sentence 1 <-> Sentence {i+2}: {score:.4f}")
- Downloads last month
- 20
Model tree for LocalDoc/TEmA-small
Base model
sentence-transformers/LaBSE