metadata
language:
- en
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- Prajwal-143/ASR-Tamil-cleaned
metrics:
- wer
model-index:
- name: Whisper-med-eng-Log-english
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ' asr-tamil-cleaned'
type: Prajwal-143/ASR-Tamil-cleaned
metrics:
- name: Wer
type: wer
value: 10.398363506699864
Whisper-med-eng - Log-english
This model is a fine-tuned version of openai/whisper-medium on the asr-tamil-cleaned dataset. It achieves the following results on the evaluation set:
- Loss: 0.1642
- Wer Ortho: 36.6838
- Wer: 10.3984
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.1613 | 0.0143 | 500 | 0.1642 | 36.6838 | 10.3984 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1