|
If you are using a custom dataset, please provide your dataset definition in the following format in `dataset_info.json`. |
|
|
|
```json |
|
"dataset_name": { |
|
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)", |
|
"ms_hub_url": "the name of the dataset repository on the ModelScope hub. (if specified, ignore script_url and file_name)", |
|
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)", |
|
"file_name": "the name of the dataset file in this directory. (required if above are not specified)", |
|
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)", |
|
"subset": "the name of the subset. (optional, default: None)", |
|
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)", |
|
"ranking": "whether the dataset is a preference dataset or not. (default: false)", |
|
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})", |
|
"columns": { |
|
"prompt": "the column name in the dataset containing the prompts. (default: instruction)", |
|
"query": "the column name in the dataset containing the queries. (default: input)", |
|
"response": "the column name in the dataset containing the responses. (default: output)", |
|
"history": "the column name in the dataset containing the histories. (default: None)", |
|
"messages": "the column name in the dataset containing the messages. (default: conversations)", |
|
"system": "the column name in the dataset containing the system prompts. (default: None)", |
|
"tools": "the column name in the dataset containing the tool description. (default: None)" |
|
}, |
|
"tags": { |
|
"role_tag": "the key in the message represents the identity. (default: from)", |
|
"content_tag": "the key in the message represents the content. (default: value)", |
|
"user_tag": "the value of the role_tag represents the user. (default: human)", |
|
"assistant_tag": "the value of the role_tag represents the assistant. (default: gpt)", |
|
"observation_tag": "the value of the role_tag represents the tool results. (default: observation)", |
|
"function_tag": "the value of the role_tag represents the function call. (default: function_call)" |
|
} |
|
} |
|
``` |
|
|
|
Given above, you can use the custom dataset via specifying `--dataset dataset_name`. |
|
|
|
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format: |
|
|
|
```json |
|
[ |
|
{ |
|
"instruction": "user instruction (required)", |
|
"input": "user input (optional)", |
|
"output": "model response (required)", |
|
"system": "system prompt (optional)", |
|
"history": [ |
|
["user instruction in the first round (optional)", "model response in the first round (optional)"], |
|
["user instruction in the second round (optional)", "model response in the second round (optional)"] |
|
] |
|
} |
|
] |
|
``` |
|
|
|
Regarding the above dataset, the `columns` in `dataset_info.json` should be: |
|
|
|
```json |
|
"dataset_name": { |
|
"columns": { |
|
"prompt": "instruction", |
|
"query": "input", |
|
"response": "output", |
|
"system": "system", |
|
"history": "history" |
|
} |
|
} |
|
``` |
|
|
|
where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model. |
|
|
|
The `system` column will be used as the system prompt in the template. The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training**. |
|
|
|
For the pre-training datasets, only the `prompt` column will be used for training. |
|
|
|
For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example: |
|
|
|
```json |
|
{ |
|
"instruction": "user instruction", |
|
"input": "user input", |
|
"output": [ |
|
"chosen answer", |
|
"rejected answer" |
|
] |
|
} |
|
``` |
|
|
|
The dataset in sharegpt format should follow the below format: |
|
|
|
```json |
|
[ |
|
{ |
|
"conversations": [ |
|
{ |
|
"from": "human", |
|
"value": "user instruction" |
|
}, |
|
{ |
|
"from": "gpt", |
|
"value": "model response" |
|
} |
|
], |
|
"system": "system prompt (optional)", |
|
"tools": "tool description (optional)" |
|
} |
|
] |
|
``` |
|
|
|
Regarding the above dataset, the `columns` in `dataset_info.json` should be: |
|
|
|
```json |
|
"dataset_name": { |
|
"columns": { |
|
"messages": "conversations", |
|
"system": "system", |
|
"tools": "tools" |
|
}, |
|
"tags": { |
|
"role_tag": "from", |
|
"content_tag": "value" |
|
} |
|
} |
|
``` |
|
|
|
where the `messages` column should be a list whose length is even, and follow the `u/a/u/a/u/a` order. |
|
|
|
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet. |
|
|