File size: 14,611 Bytes
a112a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7711f31c10>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7711f31ca0>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7711f31d30>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7711f31dc0>",
        "_build": "<function ActorCriticPolicy._build at 0x7f7711f31e50>",
        "forward": "<function ActorCriticPolicy.forward at 0x7f7711f31ee0>",
        "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7711f31f70>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7711f35040>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7f7711f350d0>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7711f35160>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7711f351f0>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7711f35280>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc_data object at 0x7f7711f2c900>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "observation_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
        "dtype": "float32",
        "_shape": [
            8
        ],
        "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
        "high": "[inf inf inf inf inf inf inf inf]",
        "bounded_below": "[False False False False False False False False]",
        "bounded_above": "[False False False False False False False False]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.discrete.Discrete'>",
        ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
        "n": 4,
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 16,
    "num_timesteps": 5013504,
    "_total_timesteps": 5000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1676647170772203249,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYYTjzD2WS6+HMItU9DjrBS76Q6tidzNAAAgD8AAIA/jnWYvvqPPj8qud+92Z44v+ON8r4/L5s8AAAAAAAAAADaNvU9PPJEP7Pdpjt+6Ry/L9A+PmbTeb0AAAAAAAAAAID6Gb1I7eq8ypKWOvBFpDu6k6a87qjfvAAAgD8AAIA/zZCJPSlsNbpIf4q51ewMtTnYnTtZ96A4AACAPwAAAADmtyA9HLgLPcczIr6Qh9W+YO2HvTfhKL0AAAAAAAAAAGYNrrwKf0C7ICsjvHpAjDyNxpU8XpZxvQAAgD8AAIA/8wmFvTXBCj/mVaG7sdQJv6B1nr0il8s8AAAAAAAAAACTKW0+uxIbP/KYL71vxgK/T0vAPmgd9r0AAAAAAAAAALPSE70UCLq6OPjXOyASnzle/PU5is6WuQAAgD8AAIA/mqmIPQsIuz0qcQe++VTVvutMab2VXfa8AAAAAAAAAABmhvq8VP23vI7XML0Q3RK+tZ4BPlEVJz8AAIA/AACAP836DLw9by27Y3F2Pql6gL7bSeM9/jUbvwAAAAAAAIA/zZYPvUUBID7KDyc+Ih7DvvhYDz092NI9AAAAAAAAAAAA2ka80j/quz6GgrzwOG08pOlfPbDOSL0AAIA/AACAPwAw5LvXMEW7hIsOO8pBdzzgSpm8nWlWPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.0027007999999999477,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcmw9Q/jocUCUhpRSlIwBbJRLyowBdJRHQK1eoIw/PgN1fZQoaAZoCWgPQwi309aIYCNzQJSGlFKUaBVL1GgWR0CtXv0BwMpgdX2UKGgGaAloD0MIZd8Vwb8GckCUhpRSlGgVS7BoFkdArV9YPiDM/3V9lChoBmgJaA9DCG8QrRVt2HJAlIaUUpRoFUvYaBZHQK1fX4Uvf0p1fZQoaAZoCWgPQwgHswkwrF5xQJSGlFKUaBVLsGgWR0CtX3GUGFBZdX2UKGgGaAloD0MIWBtjJ7ypcUCUhpRSlGgVS7ZoFkdArV+JyEL6UXV9lChoBmgJaA9DCHP2zmirmFBAlIaUUpRoFUuBaBZHQK1fk+7Dl5p1fZQoaAZoCWgPQwgtsTIa+YZyQJSGlFKUaBVLsmgWR0CtX6H3ta6jdX2UKGgGaAloD0MIU9DtJQ1uc0CUhpRSlGgVS8JoFkdArV+juKGcnXV9lChoBmgJaA9DCNTX8zXLmnNAlIaUUpRoFUvEaBZHQK1ftSThYNl1fZQoaAZoCWgPQwjGppVCIGFyQJSGlFKUaBVLpWgWR0CtX9hmGucMdX2UKGgGaAloD0MIJGB0efO+c0CUhpRSlGgVS8doFkdArV/qsCDEnHV9lChoBmgJaA9DCNHP1OtWU3NAlIaUUpRoFUvGaBZHQK1f+scQyyl1fZQoaAZoCWgPQwicxCCw8vBwQJSGlFKUaBVLvmgWR0CtYAm65Gz9dX2UKGgGaAloD0MIsrj/yDTbcUCUhpRSlGgVS8hoFkdArWAPRkVer3V9lChoBmgJaA9DCIQOuoRDzXFAlIaUUpRoFUuuaBZHQK1gGEDhcZ91fZQoaAZoCWgPQwgyyjMvBwlzQJSGlFKUaBVL4WgWR0CtYI11GLDRdX2UKGgGaAloD0MIYTdsW1TtckCUhpRSlGgVS85oFkdArWDHrMTviXV9lChoBmgJaA9DCKmj42ok2HFAlIaUUpRoFUuzaBZHQK1g6hB7eEZ1fZQoaAZoCWgPQwhbXyS05cluQJSGlFKUaBVLumgWR0CtYPRlHz6KdX2UKGgGaAloD0MIatyb37BHc0CUhpRSlGgVS7loFkdArWqj28IzFnV9lChoBmgJaA9DCGCt2jWh+3BAlIaUUpRoFUvNaBZHQK1qouvllsh1fZQoaAZoCWgPQwjudygKtMBxQJSGlFKUaBVLwmgWR0CtaqEORT0hdX2UKGgGaAloD0MIOKClK1j5cUCUhpRSlGgVS8BoFkdArWq0+aBqbnV9lChoBmgJaA9DCMK9Mm+VUXJAlIaUUpRoFUvOaBZHQK1qyJ1q33J1fZQoaAZoCWgPQwi7D0BqE2RxQJSGlFKUaBVLtmgWR0Ctatjh99c9dX2UKGgGaAloD0MI2bRSCKRAckCUhpRSlGgVS9BoFkdArWrrOs1baHV9lChoBmgJaA9DCD/G3LVEEnFAlIaUUpRoFUu6aBZHQK1q8fJ3gUF1fZQoaAZoCWgPQwgm4xjJ3vJyQJSGlFKUaBVLrmgWR0CtawUh3aBadX2UKGgGaAloD0MIxHx5AfavcECUhpRSlGgVS71oFkdArWsUrTYukHV9lChoBmgJaA9DCAAbECGuBnFAlIaUUpRoFUvQaBZHQK1rLDb8FZB1fZQoaAZoCWgPQwgW+fVDLCtyQJSGlFKUaBVLzmgWR0Cta0MLfDUFdX2UKGgGaAloD0MI7e9sj96bbkCUhpRSlGgVS8BoFkdArWvWj9GZu3V9lChoBmgJaA9DCM5wAz4/q3BAlIaUUpRoFUu5aBZHQK1sQe+23KB1fZQoaAZoCWgPQwhwXMZNDZ50QJSGlFKUaBVLuWgWR0CtbE8/MW43dX2UKGgGaAloD0MIV0Chnj50cECUhpRSlGgVS9FoFkdArWxhRKpT/HV9lChoBmgJaA9DCKoKDcQyVHFAlIaUUpRoFUu8aBZHQK1st5VwPy11fZQoaAZoCWgPQwh319mQP+VwQJSGlFKUaBVLvmgWR0CtbMJ0GNaRdX2UKGgGaAloD0MIPGwiM9d3cECUhpRSlGgVS7doFkdArWzkvM8oyHV9lChoBmgJaA9DCOV7RiI05HBAlIaUUpRoFUvJaBZHQK1s7NQj2SN1fZQoaAZoCWgPQwjk3CbcK05wQJSGlFKUaBVL0GgWR0CtbVFv60pmdX2UKGgGaAloD0MI740hALjqckCUhpRSlGgVS8hoFkdArW1fVG0/nnV9lChoBmgJaA9DCBiZgF+jx3FAlIaUUpRoFUvoaBZHQK1tcfxMFll1fZQoaAZoCWgPQwiEfxE05ihzQJSGlFKUaBVLyWgWR0CtbYMIeHSGdX2UKGgGaAloD0MIKhprfycqdECUhpRSlGgVS+NoFkdArW2p04iosXV9lChoBmgJaA9DCHI3iNZKuHNAlIaUUpRoFUu+aBZHQK1tsbADaGp1fZQoaAZoCWgPQwh39pUHKdlzQJSGlFKUaBVL0WgWR0CtbbHjQzDXdX2UKGgGaAloD0MIJNV3fpGhckCUhpRSlGgVS9loFkdArW3nseGO/HV9lChoBmgJaA9DCEsEqn9Q43JAlIaUUpRoFUvNaBZHQK1uaS5AhSt1fZQoaAZoCWgPQwj2tpkKschxQJSGlFKUaBVLsWgWR0CtboEjopx4dX2UKGgGaAloD0MIB3k9mNSmcUCUhpRSlGgVS8FoFkdArW7JfShJy3V9lChoBmgJaA9DCHOBy2MNTHBAlIaUUpRoFUvUaBZHQK1u6ifQKKJ1fZQoaAZoCWgPQwiyRj1Eo89xQJSGlFKUaBVLwGgWR0CtbyRX4j8ldX2UKGgGaAloD0MIBMqmXCHXc0CUhpRSlGgVS8xoFkdArW9ZAB1cMXV9lChoBmgJaA9DCCrj32fcfXJAlIaUUpRoFUvMaBZHQK1vfVtoBaN1fZQoaAZoCWgPQwgMW7OVl1BzQJSGlFKUaBVL5GgWR0Ctb83HBDXwdX2UKGgGaAloD0MINSkF3V4Xb0CUhpRSlGgVS8loFkdArW/iWqtHQXV9lChoBmgJaA9DCHBDjNc8XHFAlIaUUpRoFUu0aBZHQK1wDGWD6Fd1fZQoaAZoCWgPQwj1uG+1TulxQJSGlFKUaBVLyGgWR0CtcBk5ZKWcdX2UKGgGaAloD0MIak5eZIJ/ckCUhpRSlGgVS7toFkdArXAcGcFyJnV9lChoBmgJaA9DCCdMGM3KoHJAlIaUUpRoFUvUaBZHQK1wL8m8dxR1fZQoaAZoCWgPQwhLkBFQ4VVxQJSGlFKUaBVL3mgWR0CtcD9gWrOrdX2UKGgGaAloD0MIGw5LA//6c0CUhpRSlGgVS8ZoFkdArXBJu0kWynV9lChoBmgJaA9DCNxHbk06GHNAlIaUUpRoFUvOaBZHQK1wngWJrL11fZQoaAZoCWgPQwjOUNzx5lZxQJSGlFKUaBVLy2gWR0CtcTAXdj5LdX2UKGgGaAloD0MIQdMSK2O9ckCUhpRSlGgVS6toFkdArXFKyGBWgnV9lChoBmgJaA9DCA9EFmlirG9AlIaUUpRoFUvaaBZHQK1xhfUnXup1fZQoaAZoCWgPQwi2vkhoy9VwQJSGlFKUaBVLxmgWR0CtcYxGUfPpdX2UKGgGaAloD0MIwqVjzvMCdECUhpRSlGgVS8xoFkdArXI84YJmd3V9lChoBmgJaA9DCMN+T6wTS3RAlIaUUpRoFUvNaBZHQK1yxITXarZ1fZQoaAZoCWgPQwgYJH1ahcdxQJSGlFKUaBVLxWgWR0CtcvqqXF98dX2UKGgGaAloD0MIt5xLcZUkc0CUhpRSlGgVTQgBaBZHQK1y+pazNUx1fZQoaAZoCWgPQwjOGOYE7fFwQJSGlFKUaBVLz2gWR0Ctcxc1wYLtdX2UKGgGaAloD0MIlGdeDnvJc0CUhpRSlGgVS9BoFkdArXMpmseXA3V9lChoBmgJaA9DCAltOZciYHFAlIaUUpRoFUvQaBZHQK1zQzlcQiB1fZQoaAZoCWgPQwj5LTpZatByQJSGlFKUaBVL52gWR0Ctc0z+3pfQdX2UKGgGaAloD0MIs5quJ3psc0CUhpRSlGgVS9FoFkdArXNYFX7tRnV9lChoBmgJaA9DCIAPXrs0mHFAlIaUUpRoFUvQaBZHQK1zYNsFdLR1fZQoaAZoCWgPQwj68gLso8JyQJSGlFKUaBVLqmgWR0Ctc+iqQzUJdX2UKGgGaAloD0MIg2xZvu7/ckCUhpRSlGgVS+RoFkdArXQSIJqqO3V9lChoBmgJaA9DCPdWJCYoVnBAlIaUUpRoFUu/aBZHQK10IAPNFBp1fZQoaAZoCWgPQwjk3Cbc6x5zQJSGlFKUaBVLs2gWR0CtdEb1qWTpdX2UKGgGaAloD0MISRRa1n2+cUCUhpRSlGgVS8RoFkdArXSFAAyVOnV9lChoBmgJaA9DCALYgAhxDXNAlIaUUpRoFU1gAWgWR0CtdJsFMZgpdX2UKGgGaAloD0MIUb01sNXrcUCUhpRSlGgVS+doFkdArXVFz8xbjnV9lChoBmgJaA9DCIqtoGnJ6XBAlIaUUpRoFUuwaBZHQK11R5TqB3B1fZQoaAZoCWgPQwhblNkg02ZyQJSGlFKUaBVLumgWR0CtdUW1twaSdX2UKGgGaAloD0MIEi9P50pXcUCUhpRSlGgVS61oFkdArXVWnn+yaHV9lChoBmgJaA9DCGfyzTb3SnJAlIaUUpRoFUvCaBZHQK11Wpy6tkp1fZQoaAZoCWgPQwj+gXLbPiByQJSGlFKUaBVLwmgWR0CtdWbmMfihdX2UKGgGaAloD0MIu3uA7ss0dECUhpRSlGgVS9toFkdArXV2q5sj3XV9lChoBmgJaA9DCIm0jT/RTnNAlIaUUpRoFUvWaBZHQK11qinHead1fZQoaAZoCWgPQwgVjErqxJJzQJSGlFKUaBVL1mgWR0CtdbdJ8OTadX2UKGgGaAloD0MIyoy3lR6ac0CUhpRSlGgVS9VoFkdArXW6E6DGtXV9lChoBmgJaA9DCIbHfhbL4m9AlIaUUpRoFUu8aBZHQK11z91EE1V1fZQoaAZoCWgPQwh3o4/5APlvQJSGlFKUaBVLtmgWR0CtdeArQPZqdX2UKGgGaAloD0MIZyjueNO4cUCUhpRSlGgVS+loFkdArXZHcN6PbXV9lChoBmgJaA9DCCcSTDWzkXJAlIaUUpRoFUu/aBZHQK12RrxAjY91fZQoaAZoCWgPQwiGrdnKS/txQJSGlFKUaBVLzGgWR0Ctdk8h9srNdX2UKGgGaAloD0MIg23Ek51+ckCUhpRSlGgVS+JoFkdArXZXk5p8GHVlLg=="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 1224,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null
}