Pictalk_large / README.md
LucasMagnana's picture
LucasMagnana/Pictalk
6f829ab verified
|
raw
history blame
3.87 kB
metadata
license: apache-2.0
base_model: bert-large-uncased-whole-word-masking
tags:
  - generated_from_trainer
model-index:
  - name: pictalk
    results: []

pictalk

This model is a fine-tuned version of bert-large-uncased-whole-word-masking on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
3.2507 1.0 25 2.7433
2.518 2.0 50 2.2772
2.323 3.0 75 2.0185
2.0883 4.0 100 1.9731
1.8835 5.0 125 1.9086
1.8641 6.0 150 1.7880
1.7244 7.0 175 1.7763
1.7395 8.0 200 1.7191
1.6834 9.0 225 1.6734
1.6631 10.0 250 1.6970
1.5764 11.0 275 1.6939
1.54 12.0 300 1.6576
1.5205 13.0 325 1.5530
1.4832 14.0 350 1.5448
1.4582 15.0 375 1.6000
1.418 16.0 400 1.5240
1.4152 17.0 425 1.5330
1.3529 18.0 450 1.5850
1.3886 19.0 475 1.4814
1.3268 20.0 500 1.6087
1.2914 21.0 525 1.5714
1.3431 22.0 550 1.4989
1.2838 23.0 575 1.5934
1.2943 24.0 600 1.4751
1.2704 25.0 625 1.5158
1.284 26.0 650 1.6148
1.2148 27.0 675 1.4828
1.2382 28.0 700 1.4890
1.1684 29.0 725 1.5531
1.2053 30.0 750 1.4755
1.1973 31.0 775 1.4426
1.2127 32.0 800 1.5464
1.1802 33.0 825 1.4410
1.1828 34.0 850 1.5026
1.1338 35.0 875 1.5691
1.11 36.0 900 1.5073
1.1456 37.0 925 1.5055
1.1253 38.0 950 1.5108
1.1214 39.0 975 1.4563
1.1654 40.0 1000 1.5881
1.0921 41.0 1025 1.4060
1.1087 42.0 1050 1.4952
1.0824 43.0 1075 1.5512
1.1127 44.0 1100 1.5481
1.0994 45.0 1125 1.5692
1.0579 46.0 1150 1.4802
1.1006 47.0 1175 1.5585
1.0692 48.0 1200 1.4303
1.1131 49.0 1225 1.5129
1.0943 50.0 1250 1.5286

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0