|
# You Only Sample Once (YOSO) |
|
|
|
## Usage |
|
|
|
### 1-step inference |
|
1-step inference is only allowed based on SD v1.5 for now. And you should prepare the informative initialization according to the paper for better results. |
|
```python |
|
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype = torch.float16) |
|
pipeline = pipeline.to('cuda') |
|
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) |
|
pipeline.load_lora_weights('Yihong666/yoso_sd1.5_lora') |
|
generator = torch.manual_seed(318) |
|
steps = 1 |
|
bs = 1 |
|
latents = ... # maybe some latent codes of real images or SD generation |
|
latent_mean = latent.mean(dim=0) |
|
noise = torch.randn([1,bs,64,64]) |
|
input_latent = pipeline.scheduler.add_noise(latent_mean.repeat(bs,1,1,1),noise,T) |
|
imgs= pipeline(prompt="A photo of a dog", |
|
num_inference_steps=steps, |
|
num_images_per_prompt = 1, |
|
generator = generator, |
|
guidance_scale=1.5, |
|
latents = input_latent, |
|
)[0] |
|
imgs |
|
``` |
|
|
|
The simple inference without informative initialization, but worse quality: |
|
```python |
|
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype = torch.float16) |
|
pipeline = pipeline.to('cuda') |
|
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) |
|
pipeline.load_lora_weights('Yihong666/yoso_sd1.5_lora') |
|
generator = torch.manual_seed(318) |
|
steps = 1 |
|
imgs_noise = pipeline(prompt="A photo of a corgi in forest, highly detailed, 8k, XT3.", |
|
num_inference_steps=1, |
|
num_images_per_prompt = 1, |
|
generator = generator, |
|
guidance_scale=1., |
|
)[0] |
|
imgs_noise[0] |
|
``` |
|
|
|
### 2-step inference |
|
We note that a small CFG can be used to enhance the image quality. |
|
```python |
|
pipeline = DiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51", torch_dtype = torch.float16) |
|
pipeline = pipeline.to('cuda') |
|
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) |
|
pipeline.load_lora_weights('Yihong666/yoso_sd1.5_lora') |
|
generator = torch.manual_seed(318) |
|
steps = 2 |
|
imgs= pipeline(prompt="A photo of a man, XT3", |
|
num_inference_steps=steps, |
|
num_images_per_prompt = 1, |
|
generator = generator, |
|
guidance_scale=1.5, |
|
)[0] |
|
imgs |
|
``` |