|
import numpy as np
|
|
import whisper
|
|
from torch import nn
|
|
from torch import Tensor
|
|
|
|
|
|
class PyAI:
|
|
def __init__(self, useGPU: bool):
|
|
self.GPU = useGPU
|
|
|
|
class Algorithms:
|
|
def KNN(x, y, returnValues = 0):
|
|
distances = []
|
|
for axisX, axisY in zip(x, y):
|
|
distance = axisX - axisY
|
|
absDistance = np.absolute(distance)
|
|
distances.append(absDistance)
|
|
|
|
sortedDistances = []
|
|
checkDistance = min(distances, key = lambda x:np.absolute(x-i))
|
|
sortedDistances.append(checkDistance)
|
|
distances.remove(checkDistance)
|
|
|
|
if returnValues == 0:
|
|
return sortedDistances[0]
|
|
else:
|
|
return sortedDistances[0:returnValues-1]
|
|
|
|
def RNN(w, u, b, x):
|
|
yt = 0
|
|
ht = 1 / 1 (w * x + u * yt ** -1 + b) ** -1
|
|
yt = 1 / 1 (w * ht + b) ** -1
|
|
|
|
return yt
|
|
|
|
def ReLU(self, x: list, *y: list, **u: list):
|
|
X, Y, U = [Tensor(x2) for x2 in x], [Tensor(y2) for y2 in y], [Tensor(u2) for u2 in u]
|
|
|
|
if self.GPU:
|
|
relu = nn.ReLU().to("cuda")
|
|
else:
|
|
relu = nn.ReLU().to("cpu")
|
|
|
|
newX, newY, newU = [relu(x) for x in X], [relu(y) for y in Y], [relu(u) for u in U]
|
|
|
|
if newU is not None:
|
|
return newX, newY, newU
|
|
elif newY is not None:
|
|
return newX, newY
|
|
else:
|
|
return newX
|
|
|
|
class Audio:
|
|
def __init__(self, audio: str):
|
|
self.model = whisper.load_model("base")
|
|
self.audio = audio
|
|
|
|
def generateTextFromAudio(self) -> str:
|
|
aud = whisper.load_audio(self.audio)
|
|
aud = whisper.pad_or_trim(aud)
|
|
|
|
self.mel = whisper.log_mel_spectrogram(aud).to(self.model.device)
|
|
|
|
self.model.detect_language(self.mel)
|
|
|
|
options = whisper.DecodingOptions()
|
|
result = whisper.decode(self.model, self.mel, options)
|
|
|
|
return result.text
|
|
|
|
def translateText(self, text: str, dataSet: str) -> str:
|
|
with open(dataSet, "r") as d:
|
|
data = d.read()
|
|
|
|
translation = text.translate(data)
|
|
|
|
return translation
|
|
|
|
def getLang(self):
|
|
i, lang = self.model.detect_language(self.mel)
|
|
return max(lang, key=lang.get)
|
|
|
|
class NLP:
|
|
def __init__(self, text: str):
|
|
self.text = text
|
|
self.sentences = text.split(".")
|
|
self.words = text.split(" ")
|
|
self._past = ["was", "had", "did"]
|
|
self._present = ["is", "has"]
|
|
self._future = ["will", "shall"]
|
|
|
|
def setTokensTo(self, letters: bool, *words: bool, **sentences: bool):
|
|
self.tokens = []
|
|
|
|
if letters:
|
|
tokens = iter(self.text)
|
|
for t in tokens:
|
|
self.tokens.append(t)
|
|
elif words:
|
|
for t in self.words:
|
|
self.tokens.append(t)
|
|
elif sentences:
|
|
for t in self.sentences:
|
|
self.tokens.append(t)
|
|
else:
|
|
self.tokens.append("ERROR")
|
|
|
|
def getTense(self):
|
|
self.past = False
|
|
self.present = False
|
|
self.future = False
|
|
|
|
if self.sentences in self._past:
|
|
self.past = True
|
|
elif self.sentences in self._present:
|
|
self.present = True
|
|
elif self.sentences in self._future:
|
|
self.future = True
|
|
else:
|
|
return "ERROR - Tense :: Not Enough Data"
|
|
|
|
return self.past, self.present, self.future
|
|
|
|
def getWords(self):
|
|
return self.words
|
|
|
|
def getSentences(self):
|
|
return self.sentences
|
|
|
|
def getTokens(self):
|
|
return self.tokens |