M2LabOrg's picture
End of training
9ac7bf0 verified
metadata
language:
  - pt
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - M2LabOrg/jwlang
metrics:
  - wer
model-index:
  - name: Whisper small pt jwlang - Michel Mesquita
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: jwlang 1.0
          type: M2LabOrg/jwlang
          args: 'config: pt, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 23.25581395348837

Whisper small pt jwlang - Michel Mesquita

This model is a fine-tuned version of openai/whisper-small on the jwlang 1.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6913
  • Wer: 23.2558

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0053 14.0845 1000 0.6128 22.3990
0.0002 28.1690 2000 0.6528 22.6438
0.0001 42.2535 3000 0.6806 23.0110
0.0001 56.3380 4000 0.6913 23.2558

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1