M331 commited on
Commit
19489ba
·
1 Parent(s): 9a31f9d

Upload PPO LunarLander-v2 trained agent

Browse files
M331-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15da467e3c77bba4fdea54594408498c5287f175cc5008e75f0e4d1342778159
3
+ size 147408
M331-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
M331-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1df37979d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1df3797a60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1df3797af0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1df3797b80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1df3797c10>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1df3797ca0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1df3797d30>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1df3797dc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1df3797e50>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1df3797ee0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1df3797f70>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1df379a040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f1df37936f0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677623120487870293,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNZ2L2A7KA+wRelvFGnhr7Hzre8UCQKvQAAAAAAAAAAAE2uvBQGhrrnwx+5WqqSs4F077rtsDg4AACAPwAAgD+zzEs9rumNumq3g7krXlG0P8KTunCDmDgAAIA/AACAP2ayCTx7RoS6nuokOO3fEjPbFt+6l2M/twAAgD8AAIA/zVydvfacSLrDZwk7N9EWtn18VDrqFRW1AACAPwAAgD8m2e89XPN1untG17hJXqe0GaNWOePB9zcAAIA/AACAP80DGL3hLIu6EiwfNfYvDTDrcIw6qMZntAAAgD8AAIA/zeC1vZn/7D4mn6o9fEudvqDXo7t4Z9K7AAAAAAAAAAAANme8SEeRujZkLTitTBMzaK8bOmHPSLcAAIA/AACAP6bvnj2PlkO6cmANuRRWlbbGscm6h08INgAAgD8AAIA/M0BGPVx7ZrrCp7o7yt/NN82sprqmolA2AACAPwAAgD8AGjy9PZtPuwtDsroxbpc8E7KavO/FgT0AAIA/AACAP81y0zzh3oS6XgszORrBCbbalxw7NndPuAAAgD8AAIA/jU2KPfZUErpXfoM75oxyOBsKlLrVF425AACAPwAAgD8AeIQ9j655uu7Nzzpeupw1scndOftr8rkAAIA/AACAPwCbr7zwoow+MvTvvHVbV74waiM9Lv1PvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/Wt55XozYkCUhpRSlIwBbJRN6AOMAXSUR0CV88IFvAGjdX2UKGgGaAloD0MI6RA4EmjAYUCUhpRSlGgVTegDaBZHQJX5h4IKMNt1fZQoaAZoCWgPQwiu2cpL/nhkQJSGlFKUaBVN6ANoFkdAlftAKa5PM3V9lChoBmgJaA9DCDTaqiQyTmZAlIaUUpRoFU3oA2gWR0CV/KEWIoE0dX2UKGgGaAloD0MIUMQihp3wZUCUhpRSlGgVTegDaBZHQJYBwPSUkfN1fZQoaAZoCWgPQwj99QoLboRlQJSGlFKUaBVN6ANoFkdAlh/FfzBhyHV9lChoBmgJaA9DCFvPEI5Zv2FAlIaUUpRoFU3oA2gWR0CWONCJoCdSdX2UKGgGaAloD0MI3e16aQotYkCUhpRSlGgVTegDaBZHQJY65lDneSB1fZQoaAZoCWgPQwim7souGIBhQJSGlFKUaBVN6ANoFkdAljuVs54nnnV9lChoBmgJaA9DCFlsk4rGNmFAlIaUUpRoFU3oA2gWR0CWPQ8wHqu9dX2UKGgGaAloD0MIZan1fiNbYkCUhpRSlGgVTegDaBZHQJY9E3BHkLh1fZQoaAZoCWgPQwiKWMSww4RkQJSGlFKUaBVN6ANoFkdAlj31pCa7VnV9lChoBmgJaA9DCGwE4nU9dXFAlIaUUpRoFU2PAmgWR0CWQdt8/lhgdX2UKGgGaAloD0MIilkvhnJJYUCUhpRSlGgVTegDaBZHQJZCmUW2w3Z1fZQoaAZoCWgPQwjikXh5uiNgQJSGlFKUaBVN6ANoFkdAlkmC2DxsmHV9lChoBmgJaA9DCD5anDHMPUJAlIaUUpRoFUvzaBZHQJZKJX0XgtR1fZQoaAZoCWgPQwj+R6ZDJ0JnQJSGlFKUaBVN6ANoFkdAlkz07GNrCXV9lChoBmgJaA9DCPWgoBQtaGRAlIaUUpRoFU3oA2gWR0CWTu/GVAzIdX2UKGgGaAloD0MIW7OVl3wEZECUhpRSlGgVTegDaBZHQJZSBM10knl1fZQoaAZoCWgPQwi/ZU6XRVJlQJSGlFKUaBVN6ANoFkdAlligK0D2anV9lChoBmgJaA9DCBwJNNhUfmhAlIaUUpRoFU3oA2gWR0CWWiK/VRUFdX2UKGgGaAloD0MIls6HZ4nKY0CUhpRSlGgVTegDaBZHQJZiQR28qWl1fZQoaAZoCWgPQwggm+RH/FJiQJSGlFKUaBVN6ANoFkdAlm7LIcR15nV9lChoBmgJaA9DCBXFq6xtwkxAlIaUUpRoFUvjaBZHQJaUbxSYPXl1fZQoaAZoCWgPQwiiuONN/k5jQJSGlFKUaBVN6ANoFkdAlpZkIomXxHV9lChoBmgJaA9DCOlDF9S34mBAlIaUUpRoFU3oA2gWR0CWmPrxy4nXdX2UKGgGaAloD0MIcoqO5PImZUCUhpRSlGgVTegDaBZHQJab0zwc5sF1fZQoaAZoCWgPQwhruwm+6ZVhQJSGlFKUaBVN6ANoFkdAlpvaoqCpWHV9lChoBmgJaA9DCKpDboYbBV5AlIaUUpRoFU3oA2gWR0CWnP+lCTlldX2UKGgGaAloD0MIAdpWs86oXUCUhpRSlGgVTegDaBZHQJaiZ+qioKl1fZQoaAZoCWgPQwgdyHpqdRFiQJSGlFKUaBVN6ANoFkdAlqNvyoXKsHV9lChoBmgJaA9DCDS8WYP3MGRAlIaUUpRoFU3oA2gWR0CWq5wl0HQhdX2UKGgGaAloD0MIdvnWh/ULZECUhpRSlGgVTegDaBZHQJasKb9ZRsN1fZQoaAZoCWgPQwh8KxITVHJmQJSGlFKUaBVN6ANoFkdAlq54QOFxn3V9lChoBmgJaA9DCE8g7BQrC2ZAlIaUUpRoFU3oA2gWR0CWsD5ksjFAdX2UKGgGaAloD0MI/pqsUQ+iY0CUhpRSlGgVTegDaBZHQJazCKziS7p1fZQoaAZoCWgPQwjSGoNOCFk1QJSGlFKUaBVL4mgWR0CWuMSElE7XdX2UKGgGaAloD0MIsKnzqPg7XkCUhpRSlGgVTegDaBZHQJa5EtZmqYJ1fZQoaAZoCWgPQwhfQZqx6DJiQJSGlFKUaBVN6ANoFkdAlrpjpcHGCXV9lChoBmgJaA9DCNz10hSBEmBAlIaUUpRoFU3oA2gWR0CWv2M2WIGhdX2UKGgGaAloD0MIbHu7JTmuY0CUhpRSlGgVTegDaBZHQJbxBisny/d1fZQoaAZoCWgPQwj6DRMNUrxjQJSGlFKUaBVN6ANoFkdAlvKgWJrLyXV9lChoBmgJaA9DCK29T1Wh/WFAlIaUUpRoFU3oA2gWR0CW9Gmukk8idX2UKGgGaAloD0MIX7adtsasYkCUhpRSlGgVTegDaBZHQJb2YFotcwB1fZQoaAZoCWgPQwjaqbnc4B5iQJSGlFKUaBVN6ANoFkdAlvZjQ3PzF3V9lChoBmgJaA9DCIdREDw+DGdAlIaUUpRoFU3oA2gWR0CW9yzJp35fdX2UKGgGaAloD0MIlZ9U+3QjaECUhpRSlGgVTegDaBZHQJb6xnIyTIN1fZQoaAZoCWgPQwhqpRDIpQ1gQJSGlFKUaBVN6ANoFkdAlvt59qk/KXV9lChoBmgJaA9DCLN6h9uh8SVAlIaUUpRoFUvbaBZHQJcAeXQdCE91fZQoaAZoCWgPQwhEqFKzB+teQJSGlFKUaBVN6ANoFkdAlwHXC9AX23V9lChoBmgJaA9DCMoYH2avrmJAlIaUUpRoFU3oA2gWR0CXBRFnZkCndX2UKGgGaAloD0MI83LYfUfQY0CUhpRSlGgVTegDaBZHQJcHB3JPqLV1fZQoaAZoCWgPQwjS/gdYq7ldQJSGlFKUaBVN6ANoFkdAlwpSZa3ZwnV9lChoBmgJaA9DCNicg2dCHmFAlIaUUpRoFU3oA2gWR0CXEotwaR6odX2UKGgGaAloD0MIZ7eWyfDTYUCUhpRSlGgVTegDaBZHQJcTBTbWVeN1fZQoaAZoCWgPQwiYGMv0S5hiQJSGlFKUaBVN6ANoFkdAlxUUIHC40HV9lChoBmgJaA9DCE5/9iNFzF1AlIaUUpRoFU3oA2gWR0CXHPwqAjIJdX2UKGgGaAloD0MIKy/5n/wGZkCUhpRSlGgVTegDaBZHQJdO2SX+l0p1fZQoaAZoCWgPQwhHjnQGxihkQJSGlFKUaBVN6ANoFkdAl1FYvSMLnnV9lChoBmgJaA9DCHPYfcdwdGVAlIaUUpRoFU3oA2gWR0CXV3/b0voNdX2UKGgGaAloD0MIJqq3BjY6ZECUhpRSlGgVTegDaBZHQJdXhyq+8Gt1fZQoaAZoCWgPQwj/z2G+PJJiQJSGlFKUaBVN6ANoFkdAl1jIppeu3nV9lChoBmgJaA9DCLzrbMg/PWRAlIaUUpRoFU3oA2gWR0CXXZTkyULVdX2UKGgGaAloD0MIfXcrS/ROYUCUhpRSlGgVTegDaBZHQJdeTjPv8ZV1fZQoaAZoCWgPQwj1vYbgOBVhQJSGlFKUaBVN6ANoFkdAl2Mg7DEWI3V9lChoBmgJaA9DCAZn8PcLGWBAlIaUUpRoFU3oA2gWR0CXZEizcAR1dX2UKGgGaAloD0MI9raZCvEPUUCUhpRSlGgVS+VoFkdAl2XlKK5083V9lChoBmgJaA9DCD4GK0611GBAlIaUUpRoFU3oA2gWR0CXZxTI/7iydX2UKGgGaAloD0MIFD5bBwcEXkCUhpRSlGgVTegDaBZHQJdor1xsEaF1fZQoaAZoCWgPQwiXGwx1WNFjQJSGlFKUaBVN6ANoFkdAl2tlnZkCm3V9lChoBmgJaA9DCJWBA1o6RmRAlIaUUpRoFU3oA2gWR0CXcN9mHxjKdX2UKGgGaAloD0MIMuauJWTgZECUhpRSlGgVTegDaBZHQJdxJ3B55Z91fZQoaAZoCWgPQwhgIAiQoUpiQJSGlFKUaBVN6ANoFkdAl3JnH/95yHV9lChoBmgJaA9DCM6o+Sr5nFNAlIaUUpRoFUvCaBZHQJdzPRc/t6Z1fZQoaAZoCWgPQwgvaYzW0floQJSGlFKUaBVN6ANoFkdAl3b+Zw4sE3V9lChoBmgJaA9DCJXvGYnQiBdAlIaUUpRoFUvjaBZHQJd9eUliSaF1fZQoaAZoCWgPQwhJ1uHoqk1yQJSGlFKUaBVNmAJoFkdAl6ZZnL7oCHV9lChoBmgJaA9DCDARb53/pWZAlIaUUpRoFU3oA2gWR0CXpyYlpoK2dX2UKGgGaAloD0MI2SH+YcvzZUCUhpRSlGgVTegDaBZHQJeoecmShal1fZQoaAZoCWgPQwigGi/d5BJwQJSGlFKUaBVN2gFoFkdAl6jdgBtDUnV9lChoBmgJaA9DCEX2QZaFu2NAlIaUUpRoFU3oA2gWR0CXq333YcvNdX2UKGgGaAloD0MIsCDNWDQGZECUhpRSlGgVTegDaBZHQJergClrM1V1fZQoaAZoCWgPQwgjhEcbR5dmQJSGlFKUaBVN6ANoFkdAl69wt4A0bnV9lChoBmgJaA9DCCmUha8vjGNAlIaUUpRoFU3oA2gWR0CXsBREF4cFdX2UKGgGaAloD0MIx0rMs5JCR0CUhpRSlGgVS9BoFkdAl7ETMmnfmHV9lChoBmgJaA9DCFPqknGMVCVAlIaUUpRoFUvoaBZHQJe0dA1Nxlx1fZQoaAZoCWgPQwgA/b5/cwxkQJSGlFKUaBVN6ANoFkdAl7TRUWEbpHV9lChoBmgJaA9DCKIqptLPLWBAlIaUUpRoFU3oA2gWR0CXtenKW9lFdX2UKGgGaAloD0MICqGDLuGUY0CUhpRSlGgVTegDaBZHQJe4cVpKzzF1fZQoaAZoCWgPQwjVWwNbJdQ8QJSGlFKUaBVL0mgWR0CXuk4dp7C0dX2UKGgGaAloD0MIngyOkldSYkCUhpRSlGgVTegDaBZHQJe8igCfYjB1fZQoaAZoCWgPQwgdPX5vE9RwQJSGlFKUaBVNugFoFkdAl70j0Dlo13V9lChoBmgJaA9DCG6/fLJiBktAlIaUUpRoFUvraBZHQJfAaMir1dx1fZQoaAZoCWgPQwh+U1ipoLNkQJSGlFKUaBVN6ANoFkdAl8KqI7/4qXV9lChoBmgJaA9DCLzLRXwno2RAlIaUUpRoFU3oA2gWR0CXxaPQOWjXdX2UKGgGaAloD0MIDFcHQFyIbUCUhpRSlGgVTcYBaBZHQJfI7WGyon91fZQoaAZoCWgPQwjnq+Rjd6ZfQJSGlFKUaBVN6ANoFkdAl8sPr4WUKXV9lChoBmgJaA9DCNRkxttK8z5AlIaUUpRoFUv6aBZHQJfO1cmjTKF1fZQoaAZoCWgPQwjzO01mvPNwQJSGlFKUaBVNqQFoFkdAl9Czr3TNMXV9lChoBmgJaA9DCHWw/s9h42RAlIaUUpRoFU3oA2gWR0CX00N5dGAkdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
M331-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e2bf590120dca90b49021a844fdf22e8dcdcf839e214f1b44e962d9463de47f
3
+ size 87929
M331-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8657d8a1f494e80f5a810fbff713deac6eb56aeb084cc68807a0486850299957
3
+ size 43393
M331-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
M331-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 212.06 +/- 39.75
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 272.30 +/- 9.42
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fed5576e790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fed5576e820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fed5576e8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fed5576e940>", "_build": "<function ActorCriticPolicy._build at 0x7fed5576e9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fed5576ea60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fed5576eaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fed5576eb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fed5576ec10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fed5576eca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fed5576ed30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fed55769bd0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670849488977205397, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAApCir7IbuE9clofPPeLHb7Xs3W7fTQsPQAAAAAAAAAAABpAvuEyyDsW7209d47Tvfb9sDxwtAY9AAAAAAAAAACgulw+n5E8P7Gsyr3Trpi+XOUWPZ6zVjwAAAAAAAAAAABHgrw7qgc/jh/Luwu9hb5aPNs8RqHtvAAAAAAAAAAAHuH3vtkK7T4C+7m9YdQvvo7Fgr2TVdC7AAAAAAAAAAAmCxW/XcunvXr/jb4pdN28kbKcPupcbr4AAIA/AACAP6DiB7+0a9k+PQ+WvHkjZb7AlpK9iREfOwAAAAAAAAAATc8rPVjDkz9yt9Y9bg2PvomebD1b5hg9AAAAAAAAAADQrZO+/+8dP8r2obxb8Vm+WWYDvXvVw7oAAAAAAAAAADh19r4ebCY/qE/dPVXkeL5QJSy8r1ucvAAAAAAAAAAAQMELPgPgfT82jNc9J62MvtCurT2ON408AAAAAAAAAABtcy2+eE8EP1r23bw+RFu+9ue+vAt7SLwAAAAAAAAAAPPfxb3GjqA/Gukkv1MfAb+JUrw8Rf/lvAAAAAAAAAAA27PsvqMyvT4dyrU9dyo2vkCZA71o42w9AAAAAAAAAADNZSi9pAaNPStCI74hRgm+aza9vIua/rsAAAAAAAAAANvo5744OQY/rwsRvmuVZb611pa97YfpPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1SE3ww1ua0CUhpRSlIwBbJRNVwGMAXSUR0CQ7XPiDM/ydX2UKGgGaAloD0MI4iAhyhcFbUCUhpRSlGgVTZIBaBZHQJDtw4YJmd11fZQoaAZoCWgPQwgSTgteNIhwQJSGlFKUaBVNgQFoFkdAkO84eo1k2HV9lChoBmgJaA9DCEOtad7x+G5AlIaUUpRoFU1QAWgWR0CQ8KCBwuM/dX2UKGgGaAloD0MIy9jQzf7wQsCUhpRSlGgVTSUBaBZHQJDyKgh8pkR1fZQoaAZoCWgPQwgs8YCyqRRqQJSGlFKUaBVNVgFoFkdAkPPf8/D+BHV9lChoBmgJaA9DCEceiCxSdm1AlIaUUpRoFU2RAWgWR0CQ9Hwg1WKedX2UKGgGaAloD0MIY0FhUCZobECUhpRSlGgVTWsBaBZHQJD0lGFzuF91fZQoaAZoCWgPQwgYITza+PBwQJSGlFKUaBVNcwFoFkdAkPWbQ9ic5XV9lChoBmgJaA9DCPJBz2ZVKG9AlIaUUpRoFU15AWgWR0CQ+jyu6mO3dX2UKGgGaAloD0MIHxMpzWYZZcCUhpRSlGgVTeIBaBZHQJD6V6fJ3gV1fZQoaAZoCWgPQwg9EFmkiWJmQJSGlFKUaBVN/gFoFkdAkPtbpFCswXV9lChoBmgJaA9DCAjHLHsSwCDAlIaUUpRoFU1fAWgWR0CQ/MjnV5KOdX2UKGgGaAloD0MIQBaiQ+CzakCUhpRSlGgVTWEBaBZHQJD9SBmPHT91fZQoaAZoCWgPQwh+qDRi5lRsQJSGlFKUaBVNCAJoFkdAkP1UA5q/NHV9lChoBmgJaA9DCOv822W/vWxAlIaUUpRoFU19AWgWR0CQ/hPTXrdFdX2UKGgGaAloD0MIDogQV05za0CUhpRSlGgVTVIBaBZHQJD+Vr2xptd1fZQoaAZoCWgPQwhPdjOjHxk1QJSGlFKUaBVNBQFoFkdAkQADzAeq73V9lChoBmgJaA9DCBw/VBoxUxJAlIaUUpRoFU0zAWgWR0CRFIHSF49pdX2UKGgGaAloD0MIymq6nugHakCUhpRSlGgVTVgBaBZHQJEVerHU+cJ1fZQoaAZoCWgPQwilS/+S1JplQJSGlFKUaBVNzAFoFkdAkRdwd4mkWXV9lChoBmgJaA9DCIUoX9DCz2tAlIaUUpRoFU1dAWgWR0CRF30YTCcgdX2UKGgGaAloD0MI61VkdEDqZUCUhpRSlGgVTe0BaBZHQJEaVVPva111fZQoaAZoCWgPQwjvGvSlt45sQJSGlFKUaBVNTgFoFkdAkRwWd/axo3V9lChoBmgJaA9DCPSHZp5ce2xAlIaUUpRoFU1qAWgWR0CRHFG7z06HdX2UKGgGaAloD0MI4J7nT9u+cECUhpRSlGgVTQUDaBZHQJEck6QvHtF1fZQoaAZoCWgPQwgWFAZlGgFUQJSGlFKUaBVN6ANoFkdAkR25aJQ+EHV9lChoBmgJaA9DCHBBtizfN21AlIaUUpRoFU2KAWgWR0CRHc6o2n89dX2UKGgGaAloD0MIqBso8E7Ga0CUhpRSlGgVTVEBaBZHQJEeu0dBBzF1fZQoaAZoCWgPQwj7ko0H2+5qQJSGlFKUaBVNhQFoFkdAkR/qmoBJZnV9lChoBmgJaA9DCEQWaeId9HBAlIaUUpRoFU15AWgWR0CRIGrK/20zdX2UKGgGaAloD0MI1lbsLzu/cECUhpRSlGgVTWQBaBZHQJEjFiDujRF1fZQoaAZoCWgPQwi9GTVfJfRmQJSGlFKUaBVNlwFoFkdAkSYvLs8gZHV9lChoBmgJaA9DCPmdJjPey2tAlIaUUpRoFU1yAWgWR0CRJn3SKFZgdX2UKGgGaAloD0MIN94dGSsNcUCUhpRSlGgVTXcBaBZHQJEmwBDG96F1fZQoaAZoCWgPQwgxJv29lFFuQJSGlFKUaBVNQAFoFkdAkSdAQ6IWQHV9lChoBmgJaA9DCF97ZkmAGgXAlIaUUpRoFUv8aBZHQJEotwkxASp1fZQoaAZoCWgPQwj/k797x7RoQJSGlFKUaBVNaAFoFkdAkSs1MdtEX3V9lChoBmgJaA9DCEG7Q4qBBW9AlIaUUpRoFU1rAWgWR0CRLLDrqt5ldX2UKGgGaAloD0MI4qsdxblKcECUhpRSlGgVTZoBaBZHQJEtR/Ue+251fZQoaAZoCWgPQwhNnrKarnthQJSGlFKUaBVNtgFoFkdAkS5aLKmsNnV9lChoBmgJaA9DCCHNWDQd/GxAlIaUUpRoFU1+AWgWR0CRMEhl18sudX2UKGgGaAloD0MIGm7A54fxNUCUhpRSlGgVTTEBaBZHQJEwrY7JW/91fZQoaAZoCWgPQwhKfO4Ee+hqQJSGlFKUaBVNkAFoFkdAkTGk/B3zMHV9lChoBmgJaA9DCDMzMzMzx2ZAlIaUUpRoFU3fAWgWR0CRMdCFK02MdX2UKGgGaAloD0MIU9DtJQ0ZaUCUhpRSlGgVTWgBaBZHQJE2a0Z3s5Z1fZQoaAZoCWgPQwhHsHH9u5ZwQJSGlFKUaBVNfAFoFkdAkTeorJ8v3HV9lChoBmgJaA9DCBdi9UeYUWhAlIaUUpRoFU2EAWgWR0CROJn5BTn8dX2UKGgGaAloD0MI2/0qwHfjbECUhpRSlGgVTXABaBZHQJE5VOJtSAJ1fZQoaAZoCWgPQwiMhLacS2pWQJSGlFKUaBVN6ANoFkdAkTnbcXWOInV9lChoBmgJaA9DCD4l58QemgBAlIaUUpRoFU0LAWgWR0CROjBRAKOUdX2UKGgGaAloD0MIQNr/AGs4X0CUhpRSlGgVTegDaBZHQJE6T1pTMq11fZQoaAZoCWgPQwiitaLNsRhxQJSGlFKUaBVNcgFoFkdAkTuQZOzpo3V9lChoBmgJaA9DCE0tW+uLEF1AlIaUUpRoFU3oA2gWR0CRPRsI3R5UdX2UKGgGaAloD0MIjKIHPgaMa0CUhpRSlGgVTYABaBZHQJE9WHIp6Qh1fZQoaAZoCWgPQwj7rZ0oCWkKQJSGlFKUaBVNFwFoFkdAkT2vFirksHV9lChoBmgJaA9DCDUnLzIBCGpAlIaUUpRoFU2eAWgWR0CRPvEpiI+GdX2UKGgGaAloD0MIQ3Bcxs2vbUCUhpRSlGgVTV8BaBZHQJFSErlNlAh1fZQoaAZoCWgPQwiw/s9h/lJwQJSGlFKUaBVNcAFoFkdAkVJXT7VJ+XV9lChoBmgJaA9DCF6c+GpHPmdAlIaUUpRoFU2eAWgWR0CRVS1pCa7VdX2UKGgGaAloD0MIeXO4VnvYHsCUhpRSlGgVTSUBaBZHQJFX8+QlruZ1fZQoaAZoCWgPQwiiemtgqwBrQJSGlFKUaBVNdwFoFkdAkVhuKfnOjnV9lChoBmgJaA9DCKhtwyiIHG1AlIaUUpRoFU1iAWgWR0CRWKgQYk3TdX2UKGgGaAloD0MI2NR5VHwzbkCUhpRSlGgVTVQBaBZHQJFZlHPNVzZ1fZQoaAZoCWgPQwjvchHfyZVxQJSGlFKUaBVNbgFoFkdAkVuahtcfNnV9lChoBmgJaA9DCCbjGMkeJ2hAlIaUUpRoFU1tAWgWR0CRW7Hfdhy9dX2UKGgGaAloD0MITn0geWc4bkCUhpRSlGgVTU8BaBZHQJFb0Alv60p1fZQoaAZoCWgPQwidLLXe77ZtQJSGlFKUaBVNTwNoFkdAkVzs+JP69HV9lChoBmgJaA9DCLIqwk3GRW9AlIaUUpRoFU1SAWgWR0CRXgH7xd6cdX2UKGgGaAloD0MIjBGJQsveaUCUhpRSlGgVTWYBaBZHQJFebBBRhtt1fZQoaAZoCWgPQwii0R3EzmdtQJSGlFKUaBVNQwFoFkdAkV61MZgogHV9lChoBmgJaA9DCNHmOLeJE2dAlIaUUpRoFU2CAWgWR0CRXyqrBCUpdX2UKGgGaAloD0MI1SDM7d6fbUCUhpRSlGgVTWIBaBZHQJFgDTjNpud1fZQoaAZoCWgPQwimXrcIDBVmQJSGlFKUaBVNaQFoFkdAkWCGoegctHV9lChoBmgJaA9DCGUbuAN1Bm1AlIaUUpRoFU1lAWgWR0CRYvoJAt4BdX2UKGgGaAloD0MIiQyreKP6bUCUhpRSlGgVTT4BaBZHQJFj4yFfzBh1fZQoaAZoCWgPQwi1GDxM+1JAwJSGlFKUaBVNRgFoFkdAkWWic5Ke1HV9lChoBmgJaA9DCOS7lLrkNm5AlIaUUpRoFU1kAWgWR0CRZc5xzaK2dX2UKGgGaAloD0MIZXH/kekAE0CUhpRSlGgVTRgBaBZHQJFl1mf5DZ11fZQoaAZoCWgPQwiq9BPO7mNrQJSGlFKUaBVNYQFoFkdAkWXhjWkJr3V9lChoBmgJaA9DCF02OuenEnBAlIaUUpRoFU1fAWgWR0CRaA9UCJXRdX2UKGgGaAloD0MIIO7qVWTUBECUhpRSlGgVTSkBaBZHQJFoyiN83Mp1fZQoaAZoCWgPQwgN38K6cYprQJSGlFKUaBVNeAFoFkdAkWkX5zo2XXV9lChoBmgJaA9DCFLSw9Bqa29AlIaUUpRoFU1oAWgWR0CRaaHww0wbdX2UKGgGaAloD0MI6DHKMy9PakCUhpRSlGgVTU4BaBZHQJFpvbQC0Wx1fZQoaAZoCWgPQwjElEiil6VpQJSGlFKUaBVNXwFoFkdAkWyc3uNPxnV9lChoBmgJaA9DCOKt82+X6WlAlIaUUpRoFU2IAWgWR0CRbSa7mMfjdX2UKGgGaAloD0MI4UIewY32bUCUhpRSlGgVTXoBaBZHQJFuOaPS2IB1fZQoaAZoCWgPQwhrniPyXRoawJSGlFKUaBVNMQFoFkdAkXFP7m+0xHV9lChoBmgJaA9DCLdELjiDx0dAlIaUUpRoFU3oA2gWR0CRcaoUzsQedX2UKGgGaAloD0MIBYpYxLDjQcCUhpRSlGgVTQgBaBZHQJFyXUVi4KB1fZQoaAZoCWgPQwh5B3jSwpluQJSGlFKUaBVNlgFoFkdAkXJ99ph4MXV9lChoBmgJaA9DCAnE6/qF7m1AlIaUUpRoFU1UAWgWR0CRcsV8Ti84dX2UKGgGaAloD0MIbW+3JAdEcUCUhpRSlGgVTVsBaBZHQJFy24ZuQ6p1fZQoaAZoCWgPQwjRlQhU/zVnQJSGlFKUaBVNMQJoFkdAkXNZM6BAfXV9lChoBmgJaA9DCP94r1rZBnBAlIaUUpRoFU1vAWgWR0CRc6NR3u/ldX2UKGgGaAloD0MIs9KkFHRgb0CUhpRSlGgVTacBaBZHQJFz5tygf2d1fZQoaAZoCWgPQwhgkzXq4f1wQJSGlFKUaBVNUAFoFkdAkXYhBAv+O3V9lChoBmgJaA9DCCZWRiMfOHBAlIaUUpRoFU19AWgWR0CRdux0dRzjdX2UKGgGaAloD0MIP3RBfUuta0CUhpRSlGgVTXwBaBZHQJF30spXp4d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1df37979d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1df3797a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1df3797af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1df3797b80>", "_build": "<function ActorCriticPolicy._build at 0x7f1df3797c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f1df3797ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1df3797d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1df3797dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1df3797e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1df3797ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1df3797f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1df379a040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1df37936f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677623120487870293, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNZ2L2A7KA+wRelvFGnhr7Hzre8UCQKvQAAAAAAAAAAAE2uvBQGhrrnwx+5WqqSs4F077rtsDg4AACAPwAAgD+zzEs9rumNumq3g7krXlG0P8KTunCDmDgAAIA/AACAP2ayCTx7RoS6nuokOO3fEjPbFt+6l2M/twAAgD8AAIA/zVydvfacSLrDZwk7N9EWtn18VDrqFRW1AACAPwAAgD8m2e89XPN1untG17hJXqe0GaNWOePB9zcAAIA/AACAP80DGL3hLIu6EiwfNfYvDTDrcIw6qMZntAAAgD8AAIA/zeC1vZn/7D4mn6o9fEudvqDXo7t4Z9K7AAAAAAAAAAAANme8SEeRujZkLTitTBMzaK8bOmHPSLcAAIA/AACAP6bvnj2PlkO6cmANuRRWlbbGscm6h08INgAAgD8AAIA/M0BGPVx7ZrrCp7o7yt/NN82sprqmolA2AACAPwAAgD8AGjy9PZtPuwtDsroxbpc8E7KavO/FgT0AAIA/AACAP81y0zzh3oS6XgszORrBCbbalxw7NndPuAAAgD8AAIA/jU2KPfZUErpXfoM75oxyOBsKlLrVF425AACAPwAAgD8AeIQ9j655uu7Nzzpeupw1scndOftr8rkAAIA/AACAPwCbr7zwoow+MvTvvHVbV74waiM9Lv1PvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/Wt55XozYkCUhpRSlIwBbJRN6AOMAXSUR0CV88IFvAGjdX2UKGgGaAloD0MI6RA4EmjAYUCUhpRSlGgVTegDaBZHQJX5h4IKMNt1fZQoaAZoCWgPQwiu2cpL/nhkQJSGlFKUaBVN6ANoFkdAlftAKa5PM3V9lChoBmgJaA9DCDTaqiQyTmZAlIaUUpRoFU3oA2gWR0CV/KEWIoE0dX2UKGgGaAloD0MIUMQihp3wZUCUhpRSlGgVTegDaBZHQJYBwPSUkfN1fZQoaAZoCWgPQwj99QoLboRlQJSGlFKUaBVN6ANoFkdAlh/FfzBhyHV9lChoBmgJaA9DCFvPEI5Zv2FAlIaUUpRoFU3oA2gWR0CWONCJoCdSdX2UKGgGaAloD0MI3e16aQotYkCUhpRSlGgVTegDaBZHQJY65lDneSB1fZQoaAZoCWgPQwim7souGIBhQJSGlFKUaBVN6ANoFkdAljuVs54nnnV9lChoBmgJaA9DCFlsk4rGNmFAlIaUUpRoFU3oA2gWR0CWPQ8wHqu9dX2UKGgGaAloD0MIZan1fiNbYkCUhpRSlGgVTegDaBZHQJY9E3BHkLh1fZQoaAZoCWgPQwiKWMSww4RkQJSGlFKUaBVN6ANoFkdAlj31pCa7VnV9lChoBmgJaA9DCGwE4nU9dXFAlIaUUpRoFU2PAmgWR0CWQdt8/lhgdX2UKGgGaAloD0MIilkvhnJJYUCUhpRSlGgVTegDaBZHQJZCmUW2w3Z1fZQoaAZoCWgPQwjikXh5uiNgQJSGlFKUaBVN6ANoFkdAlkmC2DxsmHV9lChoBmgJaA9DCD5anDHMPUJAlIaUUpRoFUvzaBZHQJZKJX0XgtR1fZQoaAZoCWgPQwj+R6ZDJ0JnQJSGlFKUaBVN6ANoFkdAlkz07GNrCXV9lChoBmgJaA9DCPWgoBQtaGRAlIaUUpRoFU3oA2gWR0CWTu/GVAzIdX2UKGgGaAloD0MIW7OVl3wEZECUhpRSlGgVTegDaBZHQJZSBM10knl1fZQoaAZoCWgPQwi/ZU6XRVJlQJSGlFKUaBVN6ANoFkdAlligK0D2anV9lChoBmgJaA9DCBwJNNhUfmhAlIaUUpRoFU3oA2gWR0CWWiK/VRUFdX2UKGgGaAloD0MIls6HZ4nKY0CUhpRSlGgVTegDaBZHQJZiQR28qWl1fZQoaAZoCWgPQwggm+RH/FJiQJSGlFKUaBVN6ANoFkdAlm7LIcR15nV9lChoBmgJaA9DCBXFq6xtwkxAlIaUUpRoFUvjaBZHQJaUbxSYPXl1fZQoaAZoCWgPQwiiuONN/k5jQJSGlFKUaBVN6ANoFkdAlpZkIomXxHV9lChoBmgJaA9DCOlDF9S34mBAlIaUUpRoFU3oA2gWR0CWmPrxy4nXdX2UKGgGaAloD0MIcoqO5PImZUCUhpRSlGgVTegDaBZHQJab0zwc5sF1fZQoaAZoCWgPQwhruwm+6ZVhQJSGlFKUaBVN6ANoFkdAlpvaoqCpWHV9lChoBmgJaA9DCKpDboYbBV5AlIaUUpRoFU3oA2gWR0CWnP+lCTlldX2UKGgGaAloD0MIAdpWs86oXUCUhpRSlGgVTegDaBZHQJaiZ+qioKl1fZQoaAZoCWgPQwgdyHpqdRFiQJSGlFKUaBVN6ANoFkdAlqNvyoXKsHV9lChoBmgJaA9DCDS8WYP3MGRAlIaUUpRoFU3oA2gWR0CWq5wl0HQhdX2UKGgGaAloD0MIdvnWh/ULZECUhpRSlGgVTegDaBZHQJasKb9ZRsN1fZQoaAZoCWgPQwh8KxITVHJmQJSGlFKUaBVN6ANoFkdAlq54QOFxn3V9lChoBmgJaA9DCE8g7BQrC2ZAlIaUUpRoFU3oA2gWR0CWsD5ksjFAdX2UKGgGaAloD0MI/pqsUQ+iY0CUhpRSlGgVTegDaBZHQJazCKziS7p1fZQoaAZoCWgPQwjSGoNOCFk1QJSGlFKUaBVL4mgWR0CWuMSElE7XdX2UKGgGaAloD0MIsKnzqPg7XkCUhpRSlGgVTegDaBZHQJa5EtZmqYJ1fZQoaAZoCWgPQwhfQZqx6DJiQJSGlFKUaBVN6ANoFkdAlrpjpcHGCXV9lChoBmgJaA9DCNz10hSBEmBAlIaUUpRoFU3oA2gWR0CWv2M2WIGhdX2UKGgGaAloD0MIbHu7JTmuY0CUhpRSlGgVTegDaBZHQJbxBisny/d1fZQoaAZoCWgPQwj6DRMNUrxjQJSGlFKUaBVN6ANoFkdAlvKgWJrLyXV9lChoBmgJaA9DCK29T1Wh/WFAlIaUUpRoFU3oA2gWR0CW9Gmukk8idX2UKGgGaAloD0MIX7adtsasYkCUhpRSlGgVTegDaBZHQJb2YFotcwB1fZQoaAZoCWgPQwjaqbnc4B5iQJSGlFKUaBVN6ANoFkdAlvZjQ3PzF3V9lChoBmgJaA9DCIdREDw+DGdAlIaUUpRoFU3oA2gWR0CW9yzJp35fdX2UKGgGaAloD0MIlZ9U+3QjaECUhpRSlGgVTegDaBZHQJb6xnIyTIN1fZQoaAZoCWgPQwhqpRDIpQ1gQJSGlFKUaBVN6ANoFkdAlvt59qk/KXV9lChoBmgJaA9DCLN6h9uh8SVAlIaUUpRoFUvbaBZHQJcAeXQdCE91fZQoaAZoCWgPQwhEqFKzB+teQJSGlFKUaBVN6ANoFkdAlwHXC9AX23V9lChoBmgJaA9DCMoYH2avrmJAlIaUUpRoFU3oA2gWR0CXBRFnZkCndX2UKGgGaAloD0MI83LYfUfQY0CUhpRSlGgVTegDaBZHQJcHB3JPqLV1fZQoaAZoCWgPQwjS/gdYq7ldQJSGlFKUaBVN6ANoFkdAlwpSZa3ZwnV9lChoBmgJaA9DCNicg2dCHmFAlIaUUpRoFU3oA2gWR0CXEotwaR6odX2UKGgGaAloD0MIZ7eWyfDTYUCUhpRSlGgVTegDaBZHQJcTBTbWVeN1fZQoaAZoCWgPQwiYGMv0S5hiQJSGlFKUaBVN6ANoFkdAlxUUIHC40HV9lChoBmgJaA9DCE5/9iNFzF1AlIaUUpRoFU3oA2gWR0CXHPwqAjIJdX2UKGgGaAloD0MIKy/5n/wGZkCUhpRSlGgVTegDaBZHQJdO2SX+l0p1fZQoaAZoCWgPQwhHjnQGxihkQJSGlFKUaBVN6ANoFkdAl1FYvSMLnnV9lChoBmgJaA9DCHPYfcdwdGVAlIaUUpRoFU3oA2gWR0CXV3/b0voNdX2UKGgGaAloD0MIJqq3BjY6ZECUhpRSlGgVTegDaBZHQJdXhyq+8Gt1fZQoaAZoCWgPQwj/z2G+PJJiQJSGlFKUaBVN6ANoFkdAl1jIppeu3nV9lChoBmgJaA9DCLzrbMg/PWRAlIaUUpRoFU3oA2gWR0CXXZTkyULVdX2UKGgGaAloD0MIfXcrS/ROYUCUhpRSlGgVTegDaBZHQJdeTjPv8ZV1fZQoaAZoCWgPQwj1vYbgOBVhQJSGlFKUaBVN6ANoFkdAl2Mg7DEWI3V9lChoBmgJaA9DCAZn8PcLGWBAlIaUUpRoFU3oA2gWR0CXZEizcAR1dX2UKGgGaAloD0MI9raZCvEPUUCUhpRSlGgVS+VoFkdAl2XlKK5083V9lChoBmgJaA9DCD4GK0611GBAlIaUUpRoFU3oA2gWR0CXZxTI/7iydX2UKGgGaAloD0MIFD5bBwcEXkCUhpRSlGgVTegDaBZHQJdor1xsEaF1fZQoaAZoCWgPQwiXGwx1WNFjQJSGlFKUaBVN6ANoFkdAl2tlnZkCm3V9lChoBmgJaA9DCJWBA1o6RmRAlIaUUpRoFU3oA2gWR0CXcN9mHxjKdX2UKGgGaAloD0MIMuauJWTgZECUhpRSlGgVTegDaBZHQJdxJ3B55Z91fZQoaAZoCWgPQwhgIAiQoUpiQJSGlFKUaBVN6ANoFkdAl3JnH/95yHV9lChoBmgJaA9DCM6o+Sr5nFNAlIaUUpRoFUvCaBZHQJdzPRc/t6Z1fZQoaAZoCWgPQwgvaYzW0floQJSGlFKUaBVN6ANoFkdAl3b+Zw4sE3V9lChoBmgJaA9DCJXvGYnQiBdAlIaUUpRoFUvjaBZHQJd9eUliSaF1fZQoaAZoCWgPQwhJ1uHoqk1yQJSGlFKUaBVNmAJoFkdAl6ZZnL7oCHV9lChoBmgJaA9DCDARb53/pWZAlIaUUpRoFU3oA2gWR0CXpyYlpoK2dX2UKGgGaAloD0MI2SH+YcvzZUCUhpRSlGgVTegDaBZHQJeoecmShal1fZQoaAZoCWgPQwigGi/d5BJwQJSGlFKUaBVN2gFoFkdAl6jdgBtDUnV9lChoBmgJaA9DCEX2QZaFu2NAlIaUUpRoFU3oA2gWR0CXq333YcvNdX2UKGgGaAloD0MIsCDNWDQGZECUhpRSlGgVTegDaBZHQJergClrM1V1fZQoaAZoCWgPQwgjhEcbR5dmQJSGlFKUaBVN6ANoFkdAl69wt4A0bnV9lChoBmgJaA9DCCmUha8vjGNAlIaUUpRoFU3oA2gWR0CXsBREF4cFdX2UKGgGaAloD0MIx0rMs5JCR0CUhpRSlGgVS9BoFkdAl7ETMmnfmHV9lChoBmgJaA9DCFPqknGMVCVAlIaUUpRoFUvoaBZHQJe0dA1Nxlx1fZQoaAZoCWgPQwgA/b5/cwxkQJSGlFKUaBVN6ANoFkdAl7TRUWEbpHV9lChoBmgJaA9DCKIqptLPLWBAlIaUUpRoFU3oA2gWR0CXtenKW9lFdX2UKGgGaAloD0MICqGDLuGUY0CUhpRSlGgVTegDaBZHQJe4cVpKzzF1fZQoaAZoCWgPQwjVWwNbJdQ8QJSGlFKUaBVL0mgWR0CXuk4dp7C0dX2UKGgGaAloD0MIngyOkldSYkCUhpRSlGgVTegDaBZHQJe8igCfYjB1fZQoaAZoCWgPQwgdPX5vE9RwQJSGlFKUaBVNugFoFkdAl70j0Dlo13V9lChoBmgJaA9DCG6/fLJiBktAlIaUUpRoFUvraBZHQJfAaMir1dx1fZQoaAZoCWgPQwh+U1ipoLNkQJSGlFKUaBVN6ANoFkdAl8KqI7/4qXV9lChoBmgJaA9DCLzLRXwno2RAlIaUUpRoFU3oA2gWR0CXxaPQOWjXdX2UKGgGaAloD0MIDFcHQFyIbUCUhpRSlGgVTcYBaBZHQJfI7WGyon91fZQoaAZoCWgPQwjnq+Rjd6ZfQJSGlFKUaBVN6ANoFkdAl8sPr4WUKXV9lChoBmgJaA9DCNRkxttK8z5AlIaUUpRoFUv6aBZHQJfO1cmjTKF1fZQoaAZoCWgPQwjzO01mvPNwQJSGlFKUaBVNqQFoFkdAl9Czr3TNMXV9lChoBmgJaA9DCHWw/s9h42RAlIaUUpRoFU3oA2gWR0CX00N5dGAkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 212.0611057737098, "std_reward": 39.75476916053219, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T13:27:49.164662"}
 
1
+ {"mean_reward": 272.2979747213727, "std_reward": 9.421210331662037, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T23:09:05.178556"}