PEFT
Safetensors
M3LBY's picture
update readme text
e656196
metadata
license: apache-2.0
datasets:
  - HuggingFaceH4/ultrachat_200k
base_model:
  - HuggingFaceTB/SmolLM2-1.7B
library_name: peft

SmolLM2-1.7B-UltraChat_200k

SmolLM2-1.7B-UltraChat_200k

Quantized Low Rank Adaptation (QLoRA) finetuned from HuggingFaceTB/SmolLM2-1.7B to UltraChat 200k dataset.

Serves as an exercise in LLM post-training.

Model Details

  • Developed by: Andrew Melbourne
  • Model type: Language Model
  • License: Apache 2.0
  • Finetuned from model: HuggingFaceTB/SmolLM2-1.7B

Model Sources

Training and inference scripts are available here.

How to Get Started with the Model

Use the code below to get started with the model.

from peft import LoraConfig, get_peft_model, TaskType
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("M3LBY/SmolLM2-1.7B-UltraChat_200k")
tokenizer = AutoTokenizer.from_pretrained("M3LBY/SmolLM2-1.7B-UltraChat_200k")

messages = [{"role": "user", "content": "How far away is the sun?"}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt")

outputs = model.generate(**inputs)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Training Details

The adapter model was trained using Supervised Fine-Tuning (SFT) with the following configuration:

  • Base model: SmolLM2-1.7B
  • Mixed precision: bfloat16
  • Learning rate: 2e-5 with linear scheduler
  • Warmup ratio: 0.1
  • Training epochs: 1
  • Effective batch size: 32
  • Sequence length: 512 tokens
  • Flash Attention 2 enabled

Trained to a loss of 1.6965 after 6,496 steps.

Elapsed time: 2 hours 37 minutes.

Consumed ~22 Colab Compute Units for an estimated cost of $2.21 cents.

Evaluation

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

  • PEFT 0.14.0%