File size: 4,181 Bytes
39556d5 3fd8e4c 6aed7fa 3fd8e4c 6aed7fa 39556d5 1876606 3fd8e4c a6af88b 1876606 a6af88b 1876606 3fd8e4c 1876606 858e5f8 1876606 c7b0a9f 5873179 1876606 7dbe7be 6aed7fa a6af88b 3fd8e4c 1876606 3fd8e4c 6aed7fa 7dbe7be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: mit
license_link: https://huggingface.co/microsoft/phi-2/resolve/main/LICENSE
language:
- en
pipeline_tag: text-generation
tags:
- nlp
- code
datasets:
- LLM360/AmberDatasets
---
# MobiLlama-05B
<center><img src="MobileLLaMa.png" alt="mobillama logo" width="300"/></center>
MobiLlama-05B is a Small Language Model with **0.5 billion** parameters. It was trained using the Amber data sources [Amber-Dataset](https://huggingface.co/datasets/LLM360/AmberDatasets).
## Model Summary
"Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development. However, LLMs do not suit well for scenarios that require on-device processing, energy efficiency, low memory footprint, and response efficiency. These requisites are crucial for privacy, security, and sustainable deployment. This paper explores the ‘less is more’ paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource-constrained devices. Our primary contribution is the introduction of an accurate and fully transparent open-source 0.5 billion (0.5B) parameter SLM, named MobiLlama, catering to the specific needs of resource-constrained computing with an emphasis on enhanced performance with reduced resource demands. MobiLlama is a SLM design that initiates from a larger model and applies a careful parameter sharing scheme to reduce both the pre-training and the deployment cost. Our work strives to not only bridge the gap in open-source SLMs but also ensures full transparency, where complete training data pipeline, training code, model weights, and over 300 checkpoints along with evaluation codes are available on our [Github](https://github.com/mbzuai-oryx/MobiLlama).
## Model Description
- **Model type:** Small Language Model (SLM) built using the architecture design of LLaMA-7B
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Resources for more information:**
- [Training Code](https://github.com/mbzuai-oryx/MobiLlama)
- [Data Preparation](https://github.com/LLM360/amber-data-prep)
- [Fully processed Amber pretraining data](https://huggingface.co/datasets/LLM360/AmberDatasets)
## How to Use
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("MBZUAI/MobiLlama-05B", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("MBZUAI/MobiLlama-05B", trust_remote_code=True)
model.to('cuda')
text = "I was dancing in the river when "
input_ids = tokenizer(text, return_tensors="pt").to('cuda').input_ids
outputs = model.generate(input_ids, max_length=1000, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id)
print(tokenizer.batch_decode(outputs[:, input_ids.shape[1]:-1])[0].strip())
```
## Training DataMix
| Subset | Tokens (Billion) |
| ----------- | ----------- |
| Arxiv | 30.00 |
| Book | 28.86 |
| C4 | 197.67 |
| Refined-Web | 665.01 |
| StarCoder | 291.92 |
| StackExchange | 21.75 |
| Wikipedia | 23.90 |
| Total | 1259.13 |
## Hyperparameters
| Hyperparameter | Value |
| ----------- | ----------- |
| Total Parameters | 0.52B |
| Hidden Size | 2048 |
| Intermediate Size (MLPs) | 5632 |
| Number of Attention Heads | 32 |
| Number of Hidden Lyaers | 22 |
| RMSNorm ɛ | 1e^-5 |
| Max Seq Length | 2048 |
| Vocab Size | 32000 |
## Evaluation
| Evaluation Benchmark | MobiLlama-0.5B | MobiLlama-0.8B | MobiLlama-1.2B |
| ----------- | ----------- | ----------- | ----------- |
| HellaSwag | 52.52 | 54.09 | 62.99 |
| MMLU | 26.45 | 26.92 | 24.23 |
| Arc Challenge | 29.52 | 30.20 | 34.55 |
| TruthfulQA | 38.05 | 38.48 | 35.57 |
| CrowsPairs | 64.03 | 64.82 | 68.12 |
| PIQA | 72.03 | 73.17 | 75.29 |
| Race | 33.68 | 33.37 | 35.31 |
| SIQA | 40.22 | 41.60 | 41.96 |
| Winogrande | 57.53 | 57.45 | 61.08 |
## Intended Uses
Given the nature of the training data, the MobiLlama-05B model is best suited for prompts using the QA format, the chat format, and the code format.
## Citation
**BibTeX:**
```bibtex
coming soon
``` |