|
--- |
|
license: apache-2.0 |
|
language: |
|
- ko |
|
base_model: |
|
- meta-llama/Llama-3.2-1B-Instruct |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
datasets: |
|
- nayohan/CodeFeedback-Filtered-Instruction-ko |
|
--- |
|
### Model Card for Model ID |
|
- base_model : [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) |
|
|
|
### Training dataset |
|
- data_set : [nayohan/CodeFeedback-Filtered-Instruction-ko](https://huggingface.co/datasets/nayohan/CodeFeedback-Filtered-Instruction-ko) |
|
- ํด๋น ๋ฐ์ดํฐ์
์ ์ ๋ถ ์ฌ์ฉํ๊ฑด ์๋๋ฉฐ Python์ธ์ด๋ฅผ ์ฐ์ ์ถ์ถํ๋ค์ ๋ฐ์ดํฐ์
๋ค์ ์๊น์๋ฅผ ํ์
, ๊ทธ ๋ค์ ์ ์ฒ๋ฆฌ๊ฐ ๊ณตํต์ ์ผ๋ก ๋ค์ด๊ฐ๋งํ ๋ฐ์ดํฐ๋ฅผ ๋ค์ ์ถ์ถํ์ฌ ํ์ต์ ์ฌ์ฉํ์ต๋๋ค. |
|
- ์ด ํ์ต ๋ฐ์ดํฐ ๊ฑด : 49,859 ๊ฑด |
|
|
|
### Basic usage |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_id = 'MDDDDR/Llama-3.2-1B-Instruct-FFT-coder-python' |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, |
|
device_map="cuda:0", |
|
torch_dtype=torch.bfloat16) |
|
|
|
|
|
instruction = '''LCS(Longest Common Subsequence, ์ต์ฅ ๊ณตํต ๋ถ๋ถ ์์ด)๋ฌธ์ ๋ ๋ ์์ด์ด ์ฃผ์ด์ก์ ๋, ๋ชจ๋์ ๋ถ๋ถ ์์ด์ด ๋๋ ์์ด ์ค ๊ฐ์ฅ ๊ธด ๊ฒ์ ์ฐพ๋ ๋ฌธ์ ์ด๋ค. |
|
|
|
์๋ฅผ ๋ค์ด, ACAYKP์ CAPCAK์ LCS๋ ACAK๊ฐ ๋๋ค. |
|
|
|
###์
๋ ฅ : ์ฒซ์งธ ์ค๊ณผ ๋์งธ ์ค์ ๋ ๋ฌธ์์ด์ด ์ฃผ์ด์ง๋ค. ๋ฌธ์์ด์ ์ํ๋ฒณ ๋๋ฌธ์๋ก๋ง ์ด๋ฃจ์ด์ ธ ์์ผ๋ฉฐ, ์ต๋ 1000๊ธ์๋ก ์ด๋ฃจ์ด์ ธ ์๋ค. |
|
###์ถ๋ ฅ : ์ฒซ์งธ ์ค์ ์
๋ ฅ์ผ๋ก ์ฃผ์ด์ง ๋ ๋ฌธ์์ด์ LCS์ ๊ธธ์ด๋ฅผ ์ถ๋ ฅํ๋ค. |
|
|
|
###์
๋ ฅ ์์ : |
|
ACAYKP |
|
CAPCAK |
|
###์ถ๋ ฅ ์์ : 4 |
|
''' |
|
|
|
messages = [ |
|
{ |
|
"role":"user", |
|
"content":"์๋๋ ๋ฌธ์ ๋ฅผ ์ค๋ช
ํ๋ ์ง์์ฌํญ์
๋๋ค. ์ด ์์ฒญ์ ๋ํด ์ ์ ํ๊ฒ ๋ต๋ณํด์ฃผ์ธ์.\n###์ง์์ฌํญ:{instruction}\n###๋ต๋ณ:".format(instruction=instruction) |
|
} |
|
] |
|
|
|
with torch.no_grad(): |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) |
|
inputs = tokenizer(prompt, return_tensors="pt", padding=False).to('cuda') |
|
outputs = model.generate(**inputs, |
|
use_cache=False, |
|
max_length=256, |
|
top_p=0.9, |
|
temperature=0.7, |
|
repetition_penalty=1.0, |
|
pad_token_id=tokenizer.pad_token_id) |
|
|
|
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
final_output = output_text.split('๋ต๋ณ:')[-1].strip() |
|
print(final_output) |
|
# ```python |
|
# def longest_common_subsequence(str1, str2): |
|
# m = len(str1) |
|
# n = len(str2) |
|
# dp = [[0] * (n+1) for _ in range(m+1)] |
|
# |
|
# for i in range(m+1): |
|
# for j in range(n+1): |
|
# if i == 0 or j == 0: |
|
# dp[i][j] = 0 |
|
# elif str1[i-1] == str2[j-1]: |
|
# dp[i][j] = dp[i-1][j-1] + 1 |
|
# else: |
|
# dp[i][j] = max(dp[i-1][j], dp[i][j-1]) |
|
# |
|
# return dp[m][n] |
|
# |
|
# print(longest_common_subsequence("ACAYKP", "CAPCAK")) # Output: 4 |
|
# ``` |
|
``` |
|
|
|
### Hardware |
|
- A100 40GB x 1 |
|
- Training Time : 1 hour 45 minutes |