Llama-3.2-1B-Instruction-FFT
Collection
1B-Instruction-FFT Training
โข
2 items
โข
Updated
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = 'MDDDDR/Llama-3.2-1B-Instruct-FFT-ko-jp'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,
device_map="cuda:0",
torch_dtype=torch.bfloat16)
# Jp to Ko
# instruction = 'ํ๊ตญ์ด๋ก ๋ฐ๊ฟ ์ฃผ์๊ฒ ์ด์?'
# input_ = 'ICT็ฃๆฅญ็็ฃ้กใ2009ๅนด340ๅ
9000ๅใฆใฉใณใใๆจๅนด497ๅ
3000ๅใฆใฉใณใSW็ฃๆฅญ็็ฃ้กใ30ๅ
6000ๅใฆใฉใณใใ55ๅ
6000ๅใฆใฉใณใซๆ้ทใใใฎใซ็ดๆฅใป้ๆฅ็ใซๅฏไธใใใจ่ฉไพกใใใใ'
# model answer : ICT ์ฐ์
์์ฐ์ก์ด 2009๋
340์กฐ 9,000์ต์์์ ์๋
497์กฐ 3,000์ต์, SW์ฐ์
์์ฐ์ก์ด 30์กฐ 6,000์ต์์์ 55์กฐ 6,000์ต์์ผ๋ก ์ฑ์ฅํ๋ ๋ฐ ์ง์ ยท๊ฐ์ ์ ์ผ๋ก ๊ธฐ์ฌํ ๊ฒ์ผ๋ก ํ๊ฐ๋๋ค.
# DeepL : ICT ์ฐ์
์์ฐ์ก์ด 2009๋
340์กฐ9000์ต์์์ ์ง๋ํด 497์กฐ3000์ต์, SW ์ฐ์
์์ฐ์ก์ด 30์กฐ6000์ต์์์ 55์กฐ6000์ต์์ผ๋ก ์ฑ์ฅํ๋๋ฐ ์ง๊ฐ์ ์ ์ผ๋ก ๊ธฐ์ฌํ ๊ฒ์ผ๋ก ํ๊ฐ๋ฐ๊ณ ์๋ค.
# Ko to Jp
instruction = '์ด ๋ฌธ์ฅ์ ์ผ๋ณธ์ด๋ก ์ฐ๋ฉด ์ด๋ป๊ฒ ๋๋์ง ์๋ ค์ฃผ์ธ์.'
input_ = 'ํ์ง๋ง ์ฆ์์ด ๋์์ง์ง ์์ ์ง๋ 13์ผ ์ฝ๋ก๋19 ์ง๋จ ๊ฒ์ฌ๋ฅผ ๋ฐ์๊ณ ๋ค๋ฆ๊ฒ ๊ฐ์ผ ์ฌ์ค์ด ๋๋ฌ๋ฌ๋ค.'
messages = [
{
"role":"user",
"content":"์๋๋ ๋ฌธ์ ๋ฅผ ์ค๋ช
ํ๋ ์ง์์ฌํญ๊ณผ, ๊ตฌ์ฒด์ ์ธ ๋ต๋ณ์ ๋ฐฉ์์ ์๊ตฌํ๋ ์
๋ ฅ์ด ํจ๊ป ์๋ ๋ฌธ์ฅ์
๋๋ค. ์ด ์์ฒญ์ ๋ํด ์ ์ ํ๊ฒ ๋ต๋ณํด์ฃผ์ธ์.\n###์
๋ ฅ:{input}\n###์ง์์ฌํญ:{instruction}".format(instruction=instruction, input=input_)
}
]
with torch.no_grad():
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
inputs = tokenizer(prompt, return_tensors="pt", padding=False).to('cuda')
outputs = model.generate(**inputs,
use_cache=False,
max_length=256,
top_p=0.9,
temperature=0.7,
repetition_penalty=1.0,
pad_token_id=tokenizer.pad_token_id)
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
final_output = output_text.split('๋ต๋ณ:')[-1]
print(final_output)
# ใใใใ็็ถใๆชใใชใใฃใใใ13ๆฅใซๆฐๅใณใญใใฆใคใซในๆๆ็ใฎ่จบๆญๆคๆปใๅใใฆ้
ใใฆๆๆใฎไบๅฎใๆใใใซใชใฃใใ
model_name | BLEU(KoโJp) | BLEU(JpโKo) | BLEU(total) | pred_label_sim |
---|---|---|---|---|
MDDDDR/Llama-3.2-1B-Instruct-FFT-ko-jp | 0.6959 | 0.7144 | 0.7052 | 0.9166 |
meta-llama/Llama-3.2-1B-Instruct | 0.0046 | 0.0531 | 0.0311 | 0.4139 |
meta-llama/Llama-3.2-3B-Instruct | 0.0188 | 0.1170 | 0.0679 | 0.5484 |
google/gemma-2-2b-it | 0.0326 | 0.0962 | 0.0644 | 0.4856 |
Qwen/Qwen2.5-3B-Instruct | 0.0860 | 0.1608 | 0.1319 | 0.5600 |
Base model
meta-llama/Llama-3.2-1B-Instruct