Model Card for Model ID

Training dataset

Basic usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = 'MDDDDR/Llama-3.2-1B-Instruct-FFT-ko-jp'
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id,
                                             device_map="cuda:0",
                                             torch_dtype=torch.bfloat16)

# Jp to Ko
# instruction = 'ํ•œ๊ตญ์–ด๋กœ ๋ฐ”๊ฟ” ์ฃผ์‹œ๊ฒ ์–ด์š”?'
# input_ = 'ICT็”ฃๆฅญ็”Ÿ็”ฃ้กใŒ2009ๅนด340ๅ…†9000ๅ„„ใ‚ฆใ‚ฉใƒณใ‹ใ‚‰ๆ˜จๅนด497ๅ…†3000ๅ„„ใ‚ฆใ‚ฉใƒณใ€SW็”ฃๆฅญ็”Ÿ็”ฃ้กใŒ30ๅ…†6000ๅ„„ใ‚ฆใ‚ฉใƒณใ‹ใ‚‰55ๅ…†6000ๅ„„ใ‚ฆใ‚ฉใƒณใซๆˆ้•ทใ™ใ‚‹ใฎใซ็›ดๆŽฅใƒป้–“ๆŽฅ็š„ใซๅฏ„ไธŽใ—ใŸใจ่ฉ•ไพกใ•ใ‚Œใ‚‹ใ€‚'
# model answer : ICT ์‚ฐ์—… ์ƒ์‚ฐ์•ก์ด 2009๋…„ 340์กฐ 9,000์–ต์›์—์„œ ์ž‘๋…„ 497์กฐ 3,000์–ต์›, SW์‚ฐ์—… ์ƒ์‚ฐ์•ก์ด 30์กฐ 6,000์–ต์›์—์„œ 55์กฐ 6,000์–ต์›์œผ๋กœ ์„ฑ์žฅํ•˜๋Š” ๋ฐ ์ง์ ‘ยท๊ฐ„์ ‘์ ์œผ๋กœ ๊ธฐ์—ฌํ•œ ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋œ๋‹ค.
# DeepL : ICT ์‚ฐ์—… ์ƒ์‚ฐ์•ก์ด 2009๋…„ 340์กฐ9000์–ต์›์—์„œ ์ง€๋‚œํ•ด 497์กฐ3000์–ต์›, SW ์‚ฐ์—… ์ƒ์‚ฐ์•ก์ด 30์กฐ6000์–ต์›์—์„œ 55์กฐ6000์–ต์›์œผ๋กœ ์„ฑ์žฅํ•˜๋Š”๋ฐ ์ง๊ฐ„์ ‘์ ์œผ๋กœ ๊ธฐ์—ฌํ•œ ๊ฒƒ์œผ๋กœ ํ‰๊ฐ€๋ฐ›๊ณ  ์žˆ๋‹ค.

# Ko to Jp
instruction = '์ด ๋ฌธ์žฅ์„ ์ผ๋ณธ์–ด๋กœ ์“ฐ๋ฉด ์–ด๋–ป๊ฒŒ ๋˜๋Š”์ง€ ์•Œ๋ ค์ฃผ์„ธ์š”.'
input_ = 'ํ•˜์ง€๋งŒ ์ฆ์ƒ์ด ๋‚˜์•„์ง€์ง€ ์•Š์ž ์ง€๋‚œ 13์ผ ์ฝ”๋กœ๋‚˜19 ์ง„๋‹จ ๊ฒ€์‚ฌ๋ฅผ ๋ฐ›์•˜๊ณ  ๋’ค๋Šฆ๊ฒŒ ๊ฐ์—ผ ์‚ฌ์‹ค์ด ๋“œ๋Ÿฌ๋‚ฌ๋‹ค.'

messages = [
  {
    "role":"user",
    "content":"์•„๋ž˜๋Š” ๋ฌธ์ œ๋ฅผ ์„ค๋ช…ํ•˜๋Š” ์ง€์‹œ์‚ฌํ•ญ๊ณผ, ๊ตฌ์ฒด์ ์ธ ๋‹ต๋ณ€์„ ๋ฐฉ์‹์„ ์š”๊ตฌํ•˜๋Š” ์ž…๋ ฅ์ด ํ•จ๊ป˜ ์žˆ๋Š” ๋ฌธ์žฅ์ž…๋‹ˆ๋‹ค. ์ด ์š”์ฒญ์— ๋Œ€ํ•ด ์ ์ ˆํ•˜๊ฒŒ ๋‹ต๋ณ€ํ•ด์ฃผ์„ธ์š”.\n###์ž…๋ ฅ:{input}\n###์ง€์‹œ์‚ฌํ•ญ:{instruction}".format(instruction=instruction, input=input_)
  }
]
with torch.no_grad():
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
  inputs = tokenizer(prompt, return_tensors="pt", padding=False).to('cuda')
  outputs = model.generate(**inputs, 
                           use_cache=False, 
                           max_length=256, 
                           top_p=0.9,
                           temperature=0.7, 
                           repetition_penalty=1.0,
                           pad_token_id=tokenizer.pad_token_id)

output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
final_output = output_text.split('๋‹ต๋ณ€:')[-1]
print(final_output)
# ใ—ใ‹ใ—ใ€็—‡็ŠถใŒๆ‚ชใใชใ‹ใฃใŸใŒใ€13ๆ—ฅใซๆ–ฐๅž‹ใ‚ณใƒญใƒŠใ‚ฆใ‚คใƒซใ‚นๆ„ŸๆŸ“็—‡ใฎ่จบๆ–ญๆคœๆŸปใ‚’ๅ—ใ‘ใฆ้…ใ‚Œใฆๆ„ŸๆŸ“ใฎไบ‹ๅฎŸใŒๆ˜Žใ‚‰ใ‹ใซใชใฃใŸใ€‚

Model evaluation

model_name BLEU(Koโ†’Jp) BLEU(Jpโ†’Ko) BLEU(total) pred_label_sim
MDDDDR/Llama-3.2-1B-Instruct-FFT-ko-jp 0.6959 0.7144 0.7052 0.9166
meta-llama/Llama-3.2-1B-Instruct 0.0046 0.0531 0.0311 0.4139
meta-llama/Llama-3.2-3B-Instruct 0.0188 0.1170 0.0679 0.5484
google/gemma-2-2b-it 0.0326 0.0962 0.0644 0.4856
Qwen/Qwen2.5-3B-Instruct 0.0860 0.1608 0.1319 0.5600
  • ํ‰๊ฐ€๋Š” ๊ฐ๊ฐ 500๊ฑด์”ฉ ํ•˜์—ฌ ์ด 1000๊ฑด์˜ ๋ฐ์ดํ„ฐ ์‚ฌ์šฉ
  • pred_label_sim์˜ ๊ฒฝ์šฐ ๋†’์„์ˆ˜๋ก ์˜ˆ์ธก ๋ฌธ์žฅ(model_answer)๊ณผ ์ •๋‹ต ๋ฌธ์žฅ(label)์˜ ์œ ์‚ฌ๋„๊ฐ€ ๋†’๋‹ค๊ณ  ์ธก์ •๋˜๋Š” ๊ฒƒ

Hardware

  • A100 40GB x 1
  • Training Time : 1 hour 40 minutes
Downloads last month
15
Safetensors
Model size
1.24B params
Tensor type
BF16
ยท
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for MDDDDR/Llama-3.2-1B-Instruct-FFT-ko-jp

Finetuned
(281)
this model

Collection including MDDDDR/Llama-3.2-1B-Instruct-FFT-ko-jp