Text Generation
Transformers
Safetensors
imp_phi3
conversational
custom_code
Oyoy1235 commited on
Commit
c044298
1 Parent(s): 686ce70

update readme

Browse files
Files changed (1) hide show
  1. README.md +7 -9
README.md CHANGED
@@ -19,7 +19,6 @@ datasets:
19
  The Imp project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our ``Imp-v1.5-4B-Phi3`` is a strong MSLM with only **4B** parameters, which is build upon a small yet powerful SLM [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.
20
 
21
 
22
-
23
  We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
24
 
25
 
@@ -43,11 +42,11 @@ torch.set_default_device("cuda")
43
 
44
  #Create model
45
  model = AutoModelForCausalLM.from_pretrained(
46
- "MILVLG/imp-v1.5-4b",
47
  torch_dtype=torch.float16,
48
  device_map="auto",
49
  trust_remote_code=True)
50
- tokenizer = AutoTokenizer.from_pretrained("MILVLG/imp-v1.5-4b", trust_remote_code=True)
51
 
52
  #Set inputs
53
  text = "<|user|>\n<image>\nWhat are the colors of the bus in the image?\n<|end|>\n<|assistant|>\n"
@@ -71,7 +70,6 @@ We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA be
71
  | Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
72
  |:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
73
  | Imp-v1.5-4B-Phi3| 4B | 81.46 | 63.51 | 77.99|60.16 | 86.86| 1507.7 |73.28 |61.08|44.6|
74
- <!-- | [LLaVA-v1.5-lora](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 7B |79.10 | 63.00| 68.40 |58.20| 86.40 | 1476.9 | 66.10 |- |30.2| -->
75
 
76
 
77
 
@@ -86,10 +84,10 @@ This project is maintained by the [MILVLG](https://github.com/MILVLG)@Hangzhou D
86
  If you use our model or refer our work in your studies, please cite:
87
 
88
  ```bibtex
89
- @misc{imp2024,
90
- author = {Shao, Zhenwei and Ouyang, Xuecheng and Yu, Zhou and Yu, Jun},
91
- title = {Imp: An Emprical Study of Multimodal Small Language Models},
92
- year = {2024},
93
- url = {https://huggingface.co/MILVLG/imp-v1-3b}
94
  }
95
  ```
 
19
  The Imp project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our ``Imp-v1.5-4B-Phi3`` is a strong MSLM with only **4B** parameters, which is build upon a small yet powerful SLM [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.
20
 
21
 
 
22
  We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
23
 
24
 
 
42
 
43
  #Create model
44
  model = AutoModelForCausalLM.from_pretrained(
45
+ "MILVLG/Imp-v1.5-4B-Phi3",
46
  torch_dtype=torch.float16,
47
  device_map="auto",
48
  trust_remote_code=True)
49
+ tokenizer = AutoTokenizer.from_pretrained("MILVLG/Imp-v1.5-4B-Phi3", trust_remote_code=True)
50
 
51
  #Set inputs
52
  text = "<|user|>\n<image>\nWhat are the colors of the bus in the image?\n<|end|>\n<|assistant|>\n"
 
70
  | Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
71
  |:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
72
  | Imp-v1.5-4B-Phi3| 4B | 81.46 | 63.51 | 77.99|60.16 | 86.86| 1507.7 |73.28 |61.08|44.6|
 
73
 
74
 
75
 
 
84
  If you use our model or refer our work in your studies, please cite:
85
 
86
  ```bibtex
87
+ @article{imp2024,
88
+ title={Imp: Highly Capable Large Multimodal Models for Mobile Devices},
89
+ author={Shao, Zhenwei and Yu, Zhou and Yu, Jun and Ouyang, Xuecheng and Lihao, Zheng and Zhenbiao, Gai and Mingyang, Wang and Jiajun, Ding},
90
+ journal={arXiv preprint arXiv:2405.12107},
91
+ year={2024}
92
  }
93
  ```