update readme
Browse files
README.md
CHANGED
@@ -19,7 +19,6 @@ datasets:
|
|
19 |
The Imp project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our ``Imp-v1.5-4B-Phi3`` is a strong MSLM with only **4B** parameters, which is build upon a small yet powerful SLM [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.
|
20 |
|
21 |
|
22 |
-
|
23 |
We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
|
24 |
|
25 |
|
@@ -43,11 +42,11 @@ torch.set_default_device("cuda")
|
|
43 |
|
44 |
#Create model
|
45 |
model = AutoModelForCausalLM.from_pretrained(
|
46 |
-
"MILVLG/
|
47 |
torch_dtype=torch.float16,
|
48 |
device_map="auto",
|
49 |
trust_remote_code=True)
|
50 |
-
tokenizer = AutoTokenizer.from_pretrained("MILVLG/
|
51 |
|
52 |
#Set inputs
|
53 |
text = "<|user|>\n<image>\nWhat are the colors of the bus in the image?\n<|end|>\n<|assistant|>\n"
|
@@ -71,7 +70,6 @@ We conduct evaluation on 9 commonly-used benchmarks, including 5 academic VQA be
|
|
71 |
| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
|
72 |
|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
|
73 |
| Imp-v1.5-4B-Phi3| 4B | 81.46 | 63.51 | 77.99|60.16 | 86.86| 1507.7 |73.28 |61.08|44.6|
|
74 |
-
<!-- | [LLaVA-v1.5-lora](https://huggingface.co/liuhaotian/llava-v1.5-7b) | 7B |79.10 | 63.00| 68.40 |58.20| 86.40 | 1476.9 | 66.10 |- |30.2| -->
|
75 |
|
76 |
|
77 |
|
@@ -86,10 +84,10 @@ This project is maintained by the [MILVLG](https://github.com/MILVLG)@Hangzhou D
|
|
86 |
If you use our model or refer our work in your studies, please cite:
|
87 |
|
88 |
```bibtex
|
89 |
-
@
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
}
|
95 |
```
|
|
|
19 |
The Imp project aims to provide a family of a strong multimodal `small` language models (MSLMs). Our ``Imp-v1.5-4B-Phi3`` is a strong MSLM with only **4B** parameters, which is build upon a small yet powerful SLM [Phi-3 ](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)(3.8B) and a powerful visual encoder [SigLIP ](https://huggingface.co/google/siglip-so400m-patch14-384)(0.4B), and trained on 1M mixed dataset.
|
20 |
|
21 |
|
|
|
22 |
We release our model weights and provide an example below to run our model . Detailed technical report and corresponding training/evaluation code will be released soon on our [GitHub repo](https://github.com/MILVLG/imp). We will persistently improve our model and release the next versions to further improve model performance :)
|
23 |
|
24 |
|
|
|
42 |
|
43 |
#Create model
|
44 |
model = AutoModelForCausalLM.from_pretrained(
|
45 |
+
"MILVLG/Imp-v1.5-4B-Phi3",
|
46 |
torch_dtype=torch.float16,
|
47 |
device_map="auto",
|
48 |
trust_remote_code=True)
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained("MILVLG/Imp-v1.5-4B-Phi3", trust_remote_code=True)
|
50 |
|
51 |
#Set inputs
|
52 |
text = "<|user|>\n<image>\nWhat are the colors of the bus in the image?\n<|end|>\n<|assistant|>\n"
|
|
|
70 |
| Models | Size | VQAv2 | GQA | SQA(IMG) | TextVQA | POPE | MME(P) | MMB |MMB_CN|MM-Vet|
|
71 |
|:--------:|:-----:|:----:|:-------------:|:--------:|:-----:|:----:|:-------:|:-------:|:-------:|:-------:|
|
72 |
| Imp-v1.5-4B-Phi3| 4B | 81.46 | 63.51 | 77.99|60.16 | 86.86| 1507.7 |73.28 |61.08|44.6|
|
|
|
73 |
|
74 |
|
75 |
|
|
|
84 |
If you use our model or refer our work in your studies, please cite:
|
85 |
|
86 |
```bibtex
|
87 |
+
@article{imp2024,
|
88 |
+
title={Imp: Highly Capable Large Multimodal Models for Mobile Devices},
|
89 |
+
author={Shao, Zhenwei and Yu, Zhou and Yu, Jun and Ouyang, Xuecheng and Lihao, Zheng and Zhenbiao, Gai and Mingyang, Wang and Jiajun, Ding},
|
90 |
+
journal={arXiv preprint arXiv:2405.12107},
|
91 |
+
year={2024}
|
92 |
}
|
93 |
```
|