MISHANM/Korean_eng_text_generation_Llama3_8B_instruct

This model is fine-tuned for the Korean language, capable of answering queries and translating text Between English and Korean . It leverages advanced natural language processing techniques to provide accurate and context-aware responses.

Model Details

  1. Language: Korean
  2. Tasks: Question Answering(Korean to Korean) , Translation (Korean to English)
  3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct

Training Details

The model is trained on approx 90000 instruction samples.

  1. GPUs: 4*AMD Radeon™ PRO V620
  2. Training Time: 80:29:40

Inference with HuggingFace


import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Korean_eng_text_generation_Llama3_8B_instruct"

model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")

tokenizer = AutoTokenizer.from_pretrained(model_path)

# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
   # Format the prompt according to the chat template
   messages = [
       {
           "role": "system",
           "content": "You are a Korean language expert and linguist, with same knowledge give response in Korean language.",
       },
       {"role": "user", "content": prompt}
   ]

   # Apply the chat template
   formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"

   # Tokenize and generate output
   inputs = tokenizer(formatted_prompt, return_tensors="pt")
   output = model.generate(  
       **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
   )
   return tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
prompt = """LLM에서 시를 써 보세요"""
translated_text = generate_text(prompt)
print(translated_text)


Citation Information

@misc{MISHANM/Korean_eng_text_generation_Llama3_8B_instruct,
  author = {Mishan Maurya},
  title = {Introducing Fine Tuned LLM for Korean Language},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  
}
  • PEFT 0.12.0
Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for MISHANM/Korean_eng_text_generation_Llama3_8B_instruct

Adapter
(749)
this model

Dataset used to train MISHANM/Korean_eng_text_generation_Llama3_8B_instruct