MISHANM/meta-llama-8B-fp16
This model is a FP16 quantized version of the meta-llama/Meta-Llama-3-8B-Instruct, optimized for efficient inference with reduced memory usage while maintaining high precision.
Model Details
- Tasks: Causal Language Modeling, Text Generation
- Base Model: meta-llama/Meta-Llama-3-8B-Instruct
- Quantization Format: FP16
Device Used
- GPUs: 1*AMD Instinct™ MI210 Accelerators
Inference with HuggingFace
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model and tokenizer
model_path = "MISHANM/meta-llama-8B-fp16"
model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
# Format the prompt according to the chat template
messages = [
{
"role": "system",
"content": "Give response to the user query.",
},
{"role": "user", "content": prompt}
]
# Apply the chat template
formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
# Tokenize and generate output
inputs = tokenizer(formatted_prompt, return_tensors="pt")
output = model.generate( # Use model.module for DataParallel
**inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
prompt = """Give a poem on LLM ."""
text = generate_text(prompt)
print(text)
Citation Information
@misc{MISHANM/meta-llama-8B-fp16,
author = {Mishan Maurya},
title = {Introducing FP16 quantized version of meta-llama/Meta-Llama-3-8B-Instruct},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
- Downloads last month
- 6
Model tree for MISHANM/meta-llama-8B-fp16
Base model
meta-llama/Meta-Llama-3-8B-Instruct