MK-5's picture
Training complete
3ad340d verified
|
raw
history blame
2.23 kB
metadata
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
  - summarization
  - generated_from_trainer
datasets:
  - multi_news
metrics:
  - rouge
model-index:
  - name: t5-small-Abstractive-Summarizer
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: multi_news
          type: multi_news
          config: default
          split: validation
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 15.7032

t5-small-Abstractive-Summarizer

This model is a fine-tuned version of t5-small on the multi_news dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7737
  • Rouge1: 15.7032
  • Rouge2: 5.2433
  • Rougel: 12.282
  • Rougelsum: 14.0946

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00056
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
3.118 1.0 113 2.7677 15.1343 4.7712 11.8812 13.386
2.7857 2.0 226 2.7609 15.7641 4.8705 12.0955 13.9779
2.6158 3.0 339 2.7494 15.1515 4.4523 11.7147 13.4181
2.4962 4.0 452 2.7743 15.344 5.1073 12.1574 13.7917
2.4304 5.0 565 2.7737 15.7032 5.2433 12.282 14.0946

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1