|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_16_1 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: fine-tune-wav2vec2-large-xls-r-1b-sw |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_16_1 |
|
type: common_voice_16_1 |
|
config: ha |
|
split: train+validation |
|
args: ha |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 1.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fine-tune-wav2vec2-large-xls-r-1b-sw |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_1 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8564 |
|
- Wer: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 9 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:---:| |
|
| No log | 2.55 | 200 | 2.8195 | 1.0 | |
|
| 4.4719 | 5.1 | 400 | 2.7629 | 1.0 | |
|
| 4.4719 | 7.64 | 600 | 1.8564 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.13.3 |
|
|