ML-777's picture
Model save
1be97f1 verified
|
raw
history blame
2.35 kB
metadata
library_name: peft
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-lora-food101
    results: []

Visualize in Weights & Biases Visualize in Weights & Biases

vit-base-patch16-224-in21k-finetuned-lora-food101

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5198
  • Accuracy: 0.8565

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8397 0.9981 133 0.6682 0.8154
0.8471 1.9962 266 0.5984 0.8366
0.6114 2.9944 399 0.5590 0.8438
0.6202 4.0 533 0.5335 0.8532
0.4775 4.9906 665 0.5198 0.8565

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3