metadata
language:
- mt
datasets:
- MLRS/korpus_malti
model-index:
- name: BERTu
results:
- task:
type: dependency-parsing
name: Dependency Parsing
dataset:
type: universal_dependencies
args: mt_mudt
name: Maltese Universal Dependencies Treebank (MUDT)
metrics:
- type: uas
value: 92.31
name: Unlabelled Attachment Score
- type: las
value: 88.14
name: Labelled Attachment Score
- task:
type: part-of-speech-tagging
name: Part-of-Speech Tagging
dataset:
type: mlrs_pos
name: MLRS POS dataset
metrics:
- type: accuracy
value: 98.58
name: UPOS Accuracy
args: upos
- type: accuracy
value: 98.54
name: XPOS Accuracy
args: xpos
- task:
type: named-entity-recognition
name: Named Entity Recognition
dataset:
type: wikiann
name: WikiAnn (Maltese)
args: mt
metrics:
- type: f1
args: span
value: 86.77
name: Span-based F1
- task:
type: sentiment-analysis
name: Sentiment Analysis
dataset:
type: mt-sentiment-analysis
name: Maltese Sentiment Analysis Dataset
metrics:
- type: f1
args: macro
value: 78.96
name: Macro-averaged F1
license: cc-by-nc-sa-4.0
widget:
- text: Malta hija gżira fil-[MASK].
BERTu
A Maltese monolingual model pre-trained from scratch on the Korpus Malti v4.0 using the BERT (base) architecture.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at https://mlrs.research.um.edu.mt/.
Citation
This work was first presented in Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese. Cite it as follows:
@inproceedings{BERTu,
title = "Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and {BERT} Models for {M}altese",
author = "Micallef, Kurt and
Gatt, Albert and
Tanti, Marc and
van der Plas, Lonneke and
Borg, Claudia",
booktitle = "Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing",
month = jul,
year = "2022",
address = "Hybrid",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.deeplo-1.10",
doi = "10.18653/v1/2022.deeplo-1.10",
pages = "90--101",
}