MLRS
/

mBERTu / README.md
KurtMica's picture
Citation.
cd6fcd6
|
raw
history blame
2.86 kB
---
language:
- mt
datasets:
- MLRS/korpus_malti
model-index:
- name: mBERTu
results:
- task:
type: dependency-parsing
name: Dependency Parsing
dataset:
type: universal_dependencies
args: mt_mudt
name: Maltese Universal Dependencies Treebank (MUDT)
metrics:
- type: uas
value: 92.10
name: Unlabelled Attachment Score
- type: las
value: 87.87
name: Labelled Attachment Score
- task:
type: part-of-speech-tagging
name: Part-of-Speech Tagging
dataset:
type: mlrs_pos
name: MLRS POS dataset
metrics:
- type: accuracy
value: 98.66
name: UPOS Accuracy
args: upos
- type: accuracy
value: 98.58
name: XPOS Accuracy
args: xpos
- task:
type: named-entity-recognition
name: Named Entity Recognition
dataset:
type: wikiann
name: WikiAnn (Maltese)
args: mt
metrics:
- type: f1
args: span
value: 86.60
name: Span-based F1
- task:
type: sentiment-analysis
name: Sentiment Analysis
dataset:
type: mt-sentiment-analysis
name: Maltese Sentiment Analysis Dataset
metrics:
- type: f1
args: macro
value: 76.79
name: Macro-averaged F1
license: cc-by-nc-sa-4.0
widget:
- text: "Malta huwa pajjiż fl-[MASK]."
---
# mBERTu
A Maltese multilingual model pre-trained on the Korpus Malti v4.0 using multilingual BERT as the initial checkpoint.
## License
This work is licensed under a
[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa].
Permissions beyond the scope of this license may be available at [https://mlrs.research.um.edu.mt/](https://mlrs.research.um.edu.mt/).
[![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa]
[cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/
[cc-by-nc-sa-image]: https://licensebuttons.net/l/by-nc-sa/4.0/88x31.png
## Citation
This work was first presented in [Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese](https://arxiv.org/abs/2205.10517).
Cite it as follows:
```bibtex
@inproceedings{BERTu,
title = {Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and {BERT} Models for {M}altese},
author = {Micallef, Kurt and
Gatt, Albert and
Tanti, Marc and
van der Plas, Lonneke and
Borg, Claudia},
booktitle = {Proceedings of the 3rd Workshop on Deep Learning for Low-Resource NLP (DeepLo 2022)},
day = {14},
month = {07},
year = {2022},
address = {Seattle, Washington},
publisher = {Association for Computational Linguistics},
}
```