project-monai's picture
Upload retinalOCT_RPD_segmentation version 0.0.1
b8597df verified
# Aaron Y. Lee MD MSCI (University of Washington) Copyright 2019
#
# Code ported from Markus Mayer's excellent work (https://www5.cs.fau.de/research/software/octseg/)
#
# Also thanks to who contributed to the original openVol.m in Markus's project
# Radim Kolar, Brno University, Czech Republic
# Kris Sheets, Retinal Cell Biology Lab, Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans
import array
import codecs
import datetime
import struct
from collections import OrderedDict
import numpy as np
class VolFile:
def __init__(self, filename):
"""
Parses Heyex Spectralis *.vol files.
Args:
filename (str): Path to vol file
Returns:
volFile class
"""
self.__parse_volfile(filename)
@property
def oct(self):
"""
Retrieve OCT volume as a 3D numpy array.
Returns:
3D numpy array with OCT intensities as 'uint8' array
"""
return self.wholefile["cScan"]
@property
def irslo(self):
"""
Retrieve IR SLO image as 2D numpy array
Returns:
2D numpy array with IR reflectance SLO image as 'uint8' array.
"""
return self.wholefile["sloImage"]
@property
def grid(self):
"""
Retrieve the IR SLO pixel coordinates for the B scan OCT slices
Returns:
2D numpy array with the number of b scan images in the first dimension
and x_0, y_0, x_1, y_1 defining the line of the B scan on the pixel
coordinates of the IR SLO image.
"""
wf = self.wholefile
grid = []
for bi in range(len(wf["slice-headers"])):
bscan_head = wf["slice-headers"][bi]
x_0 = int(bscan_head["startX"] / wf["header"]["scaleXSlo"])
x_1 = int(bscan_head["endX"] / wf["header"]["scaleXSlo"])
y_0 = int(bscan_head["startY"] / wf["header"]["scaleYSlo"])
y_1 = int(bscan_head["endY"] / wf["header"]["scaleYSlo"])
grid.append([x_0, y_0, x_1, y_1])
return grid
def render_ir_slo(self, filename, render_grid=False):
"""
Renders IR SLO image as a PNG file and optionally overlays grid of B scans
Args:
filename (str): filename to save IR SLO image
renderGrid (bool): True will render red lines for the location of the B scans.
Returns:
None
"""
from PIL import Image, ImageDraw
wf = self.wholefile
a = np.copy(wf["sloImage"])
if render_grid:
a = np.stack((a,) * 3, axis=-1)
a = Image.fromarray(a)
draw = ImageDraw.Draw(a)
grid = self.grid
for x_0, y_0, x_1, y_1 in grid:
draw.line((x_0, y_0, x_1, y_1), fill=(255, 0, 0), width=3)
a.save(filename)
else:
Image.fromarray(a).save(filename)
def render_oct_scans(self, filepre="oct", render_seg=False):
"""
Renders OCT images a PNG file and optionally overlays segmentation lines
Also creates a CSV file of vol file features.
Args:
filepre (str): filename prefix. OCT Images will be named as "<prefix>_001.png"
renderSeg (bool): True will render colored lines for the segmentation of the RPE, ILM, and NFL on the B scans.
Returns:
None
"""
from PIL import Image
wf = self.wholefile
for i in range(wf["cScan"].shape[0]):
a = np.copy(wf["cScan"][i])
if render_seg:
a = np.stack((a,) * 3, axis=-1)
for li in range(wf["segmentations"].shape[0]):
for x in range(wf["segmentations"].shape[2]):
a[int(wf["segmentations"][li, i, x]), x, li] = 255
Image.fromarray(a).save("%s_%03d.png" % (filepre, i))
def __parse_volfile(self, fn, parse_seg=False):
print(fn)
wholefile = OrderedDict()
decode_hex = codecs.getdecoder("hex_codec")
with open(fn, "rb") as fin:
header = OrderedDict()
header["version"] = fin.read(12)
header["octSizeX"] = struct.unpack("I", fin.read(4))[0] # lateral resolution
header["numBscan"] = struct.unpack("I", fin.read(4))[0]
header["octSizeZ"] = struct.unpack("I", fin.read(4))[0] # OCT depth
header["scaleX"] = struct.unpack("d", fin.read(8))[0]
header["distance"] = struct.unpack("d", fin.read(8))[0]
header["scaleZ"] = struct.unpack("d", fin.read(8))[0]
header["sizeXSlo"] = struct.unpack("I", fin.read(4))[0]
header["sizeYSlo"] = struct.unpack("I", fin.read(4))[0]
header["scaleXSlo"] = struct.unpack("d", fin.read(8))[0]
header["scaleYSlo"] = struct.unpack("d", fin.read(8))[0]
header["fieldSizeSlo"] = struct.unpack("I", fin.read(4))[0] # FOV in degrees
header["scanFocus"] = struct.unpack("d", fin.read(8))[0]
header["scanPos"] = fin.read(4)
header["examTime"] = struct.unpack("=q", fin.read(8))[0] / 1e7
header["examTime"] = datetime.datetime.utcfromtimestamp(
header["examTime"] - (369 * 365.25 + 4) * 24 * 60 * 60
) # needs to be checked
header["scanPattern"] = struct.unpack("I", fin.read(4))[0]
header["BscanHdrSize"] = struct.unpack("I", fin.read(4))[0]
header["ID"] = fin.read(16)
header["ReferenceID"] = fin.read(16)
header["PID"] = struct.unpack("I", fin.read(4))[0]
header["PatientID"] = fin.read(21)
header["unknown2"] = fin.read(3)
header["DOB"] = struct.unpack("d", fin.read(8))[0] - 25569
header["DOB"] = datetime.datetime.utcfromtimestamp(0) + datetime.timedelta(
seconds=header["DOB"] * 24 * 60 * 60
) # needs to be checked
header["VID"] = struct.unpack("I", fin.read(4))[0]
header["VisitID"] = fin.read(24)
header["VisitDate"] = struct.unpack("d", fin.read(8))[0] - 25569
header["VisitDate"] = datetime.datetime.utcfromtimestamp(0) + datetime.timedelta(
seconds=header["VisitDate"] * 24 * 60 * 60
) # needs to be checked
header["GridType"] = struct.unpack("I", fin.read(4))[0]
header["GridOffset"] = struct.unpack("I", fin.read(4))[0]
wholefile["header"] = header
fin.seek(2048)
u = array.array("B")
u.frombytes(fin.read(header["sizeXSlo"] * header["sizeYSlo"]))
u = np.array(u).astype("uint8").reshape((header["sizeXSlo"], header["sizeYSlo"]))
wholefile["sloImage"] = u
slo_offset = 2048 + header["sizeXSlo"] * header["sizeYSlo"]
oct_offset = header["BscanHdrSize"] + header["octSizeX"] * header["octSizeZ"] * 4
bscans = []
bscanheaders = []
bscanqualities = []
if parse_seg:
segmentations = None
for i in range(header["numBscan"]):
fin.seek(16 + slo_offset + i * oct_offset)
bscan_head = OrderedDict()
bscan_head["startX"] = struct.unpack("d", fin.read(8))[0]
bscan_head["startY"] = struct.unpack("d", fin.read(8))[0]
bscan_head["endX"] = struct.unpack("d", fin.read(8))[0]
bscan_head["endY"] = struct.unpack("d", fin.read(8))[0]
bscan_head["numSeg"] = struct.unpack("I", fin.read(4))[0]
bscan_head["offSeg"] = struct.unpack("I", fin.read(4))[0]
bscan_head["quality"] = struct.unpack("f", fin.read(4))[0]
bscan_head["shift"] = struct.unpack("I", fin.read(4))[0]
bscanheaders.append(bscan_head)
bscanqualities.append(bscan_head["quality"])
# extract OCT B scan data
fin.seek(header["BscanHdrSize"] + slo_offset + i * oct_offset)
u = array.array("f")
u.frombytes(fin.read(4 * header["octSizeX"] * header["octSizeZ"]))
u = np.array(u).reshape((header["octSizeZ"], header["octSizeX"]))
# remove out of boundary
v = struct.unpack("f", decode_hex("FFFF7F7F")[0])
u[u == v] = 0
# log normalize
u = np.log(10000 * u + 1)
u = (255.0 * (np.clip(u, 0, np.max(u)) / np.max(u))).astype("uint8")
bscans.append(u)
if parse_seg:
# extract OCT segmentations data
fin.seek(256 + slo_offset + i * oct_offset)
u = array.array("f")
u.frombytes(fin.read(4 * header["octSizeX"] * bscan_head["numSeg"]))
u = np.array(u)
print(u.shape)
u[u == v] = 0.0
if segmentations is None:
segmentations = []
for _ in range(bscan_head["numSeg"]):
segmentations.append([])
for j in range(bscan_head["numSeg"]):
segmentations[j].append(u[j * header["octSizeX"] : (j + 1) * header["octSizeX"]].tolist())
wholefile["cScan"] = np.array(bscans)
if parse_seg:
wholefile["segmentations"] = np.array(segmentations)
wholefile["slice-headers"] = bscanheaders
wholefile["average-quality"] = np.mean(bscanqualities)
self.wholefile = wholefile
import csv
from pathlib import Path, PurePath
vol_features = [
PurePath(fn).name,
wholefile["header"]["version"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["numBscan"],
wholefile["header"]["octSizeX"],
wholefile["header"]["octSizeZ"],
wholefile["header"]["distance"],
wholefile["header"]["scaleX"],
wholefile["header"]["scaleZ"],
wholefile["header"]["sizeXSlo"],
wholefile["header"]["sizeYSlo"],
wholefile["header"]["scaleXSlo"],
wholefile["header"]["scaleYSlo"],
wholefile["header"]["fieldSizeSlo"],
wholefile["header"]["scanFocus"],
wholefile["header"]["scanPos"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["examTime"],
wholefile["header"]["scanPattern"],
wholefile["header"]["BscanHdrSize"],
wholefile["header"]["ID"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["ReferenceID"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["PID"],
wholefile["header"]["PatientID"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["DOB"],
wholefile["header"]["VID"],
wholefile["header"]["VisitID"].decode("utf-8").rstrip("\x00"),
wholefile["header"]["VisitDate"],
wholefile["header"]["GridType"],
wholefile["header"]["GridOffset"],
wholefile["average-quality"],
]
output_dir = PurePath(fn).parent
output_csv = output_dir.joinpath("vols.csv")
if not Path(output_csv).exists():
print("Creating vols.csv as it does not exist.")
with open(output_csv, "w", newline="") as file:
writer = csv.writer(file)
writer.writerow(
[
"filename",
"version",
"numBscan",
"octSizeX",
"octSizeZ",
"distance",
"scaleX",
"scaleZ",
"sizeXSlo",
"sizeYSlo",
"scaleXSlo",
"scaleYSlo",
"fieldSizeSlo",
"scanFocus",
"scanPos",
"examTime",
"scanPattern",
"BscanHdrSize",
"ID",
"ReferenceID",
"PID",
"PatientID",
"DOB",
"VID",
"VisitID",
"VisitDate",
"GridType",
"GridOffset",
"Average Quality",
]
)
with open(output_csv, "r", newline="") as file:
existing_vols = csv.reader(file)
for vol in existing_vols:
if vol[0] == PurePath(fn).name:
print("Skipping,", PurePath(fn).name, "already present in vols.csv.")
return
with open(output_csv, "a", newline="") as file:
print("Adding", PurePath(fn).name, "to vols.csv.")
writer = csv.writer(file)
writer.writerow(vol_features)
@property
def file_header(self):
"""
Retrieve vol header fields
Returns:
Dictionary with the following keys
- version: version number of vol file definition
- numBscan: number of B scan images in the volume
- octSizeX: number of pixels in the width of the OCT B scan
- octSizeZ: number of pixels in the height of the OCT B scan
- distance: unknown
- scaleX: resolution scaling factor of the width of the OCT B scan
- scaleZ: resolution scaling factor of the height of the OCT B scan
- sizeXSlo: number of pixels in the width of the IR SLO image
- sizeYSlo: number of pixels in the height of the IR SLO image
- scaleXSlo: resolution scaling factor of the width of the IR SLO image
- scaleYSlo: resolution scaling factor of the height of the IR SLO image
- fieldSizeSlo: field of view (FOV) of the retina in degrees
- scanFocus: unknown
- scanPos: Left or Right eye scanned
- examTime: Datetime of the scan (needs to be checked)
- scanPattern: unknown
- BscanHdrSize: size of B scan header in bytes
- ID: unknown
- ReferenceID
- PID: unknown
- PatientID: Patient ID string
- DOB: Date of birth
- VID: unknown
- VisitID: Visit ID string
- VisitDate: Datetime of visit (needs to be checked)
- GridType: unknown
- GridOffset: unknown
"""
return self.wholefile["header"]
def bscan_header(self, slicei):
"""
Retrieve the B Scan header information per slice.
Args:
slicei (int): index of B scan
Returns:
Dictionary with the following keys
- startX: x-coordinate for B scan on IR. (see getGrid)
- startY: y-coordinate for B scan on IR. (see getGrid)
- endX: x-coordinate for B scan on IR. (see getGrid)
- endY: y-coordinate for B scan on IR. (see getGrid)
- numSeg: 2 or 3 segmentation lines for the B scan
- quality: OCT signal quality
- shift: unknown
"""
return self.wholefile["slice-headers"][slicei]
def save_grid(self, outfn):
"""
Saves the grid coordinates mapping OCT Bscans to the IR SLO image to a text file. The text file
will be a tab-delimited file with 5 columns: The bscan number, x_0, y_0, x_1, y_1 in pixel space
scaled to the resolution of the IR SLO image.
Args:
outfn (str): location of where to output the file
Returns:
None
"""
grid = self.grid
with open(outfn, "w") as fout:
fout.write("bscan\tx_0\ty_0\tx_1\ty_1\n")
ri = 0
for r in grid:
r = [ri] + r
fout.write("%s\n" % "\t".join(map(str, r)))
ri += 1