metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
- generated_from_trainer
datasets:
- test
model-index:
- name: lilt-en-test
results: []
lilt-en-test
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the test dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Answer: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3}
- Header: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1}
- Question: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2}
- Overall Precision: 1.0
- Overall Recall: 1.0
- Overall F1: 1.0
- Overall Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
0.0704 | 200.0 | 200 | 0.0001 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0001 | 400.0 | 400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0001 | 600.0 | 600 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0001 | 800.0 | 800 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0 | 1000.0 | 1000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0 | 1200.0 | 1200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0 | 1400.0 | 1400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0 | 1600.0 | 1600 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0 | 1800.0 | 1800 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0 | 2000.0 | 2000 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0 | 2200.0 | 2200 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
0.0 | 2400.0 | 2400 | 0.0000 | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 3} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 1} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1