Computer Vision Collection
Collection
1 item
•
Updated
This card contains the official weights of PairDETR, a method for Joint Detection and Association of Human Bodies and Faces CVPR 2024.
To reproduce our training experiments and evaluation results please use our github repo PairDETR
PairDETR extracts embeddings using ResNet-50 followed by a transformer to predict pairs. During training, pairs are matched with ground-truth and corrected using approximated matching loss.
import os
import numpy as np
import pandas as pd
from transformers import DeformableDetrForObjectDetection, DeformableDetrConfig, AutoImageProcessor
import torch.nn as nn
import torch
from PIL import Image
import shutil
import requests
from hf_utils import PairDetr, inverse_sigmoid, forward
## Or download the weights manually
def get_weights():
url = "https://huggingface.co/MTSAIR/PairDETR/blob/main/pytorch_model.bin"
response = requests.get(url, stream=True)
with open('full_weights.pth', 'wb') as out_file:
shutil.copyfileobj(response.raw, out_file)
## loading the model
configuration = DeformableDetrConfig("SenseTime/deformable-detr")
processor = AutoImageProcessor.from_pretrained("MTSAIR/PairDETR")
model = DeformableDetrForObjectDetection(configuration)
model = PairDetr(model, 1500, 3)
get_weights()
checkpoint = torch.load("full_weights.pth", map_location="cpu")
model.load_state_dict(checkpoint, strict=False)
## run inference
path = "./test.jpg"
image = Image.open(path)
inputs = processor(images=image, return_tensors="pt")
outputs = forward(model, inputs["pixel_values"])
Comparison between PairDETR method and other methods in the miss Matching Rate mMr-2 (the lower the better) on CrowdHuman dataset:
Model | Reasnable | Bare | Partial | Heavy | Hard | Average | Checkpoints |
---|---|---|---|---|---|---|---|
POS | 55.49 | 48.20 | 62.00 | 80.98 | 84.58 | 66.4 | weights |
BFJ | 42.96 | 37.96 | 48.20 | 67.31 | 71.44 | 52.5 | weights |
BPJ | - | - | - | - | - | 50.1 | weights |
PBADET | - | - | - | - | - | 50.8 | none |
OURs | 35.25 | 30.38 | 38.12 | 52.47 | 55.75 | 42.9 | weights |