MUsama100's picture
End of training
ec86e15 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: tiiuae/falcon-7b-instruct
model-index:
  - name: Falcon-7b-Finetuned-MBPP-Dataset-base
    results: []

Falcon-7b-Finetuned-MBPP-Dataset-base

This model is a fine-tuned version of tiiuae/falcon-7b-instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9306

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.8233 0.07 50 1.5671
1.673 0.15 100 1.5646
1.635 0.22 150 1.5569
1.4232 0.29 200 1.5369
1.4397 0.37 250 1.5073
1.5663 0.44 300 1.4721
1.4632 0.51 350 1.4342
1.6059 0.59 400 1.3978
1.6951 0.66 450 1.3606
1.7563 0.73 500 1.3241
0.939 0.81 550 1.2867
0.8452 0.88 600 1.2481
1.1147 0.95 650 1.2084
0.8543 1.03 700 1.1682
0.6985 1.1 750 1.1356
1.0973 1.17 800 1.1100
2.0793 1.25 850 1.0892
0.9806 1.32 900 1.0713
0.8114 1.4 950 1.0555
1.4202 1.47 1000 1.0425
0.7755 1.54 1050 1.0314
0.8624 1.62 1100 1.0223
1.6017 1.69 1150 1.0143
1.069 1.76 1200 1.0071
1.2192 1.84 1250 1.0007
0.8816 1.91 1300 0.9944
0.9615 1.98 1350 0.9887
1.2626 2.06 1400 0.9833
1.0128 2.13 1450 0.9787
0.7951 2.2 1500 0.9741
1.0879 2.28 1550 0.9701
1.0546 2.35 1600 0.9661
0.9218 2.42 1650 0.9625
1.1159 2.5 1700 0.9591
0.6223 2.57 1750 0.9561
0.7334 2.64 1800 0.9536
0.9296 2.72 1850 0.9512
1.0653 2.79 1900 0.9489
0.8812 2.86 1950 0.9469
0.7767 2.94 2000 0.9452
0.9707 3.01 2050 0.9435
1.1393 3.08 2100 0.9420
0.8604 3.16 2150 0.9407
0.7592 3.23 2200 0.9396
0.8046 3.3 2250 0.9385
1.5882 3.38 2300 0.9375
1.0068 3.45 2350 0.9366
1.205 3.52 2400 0.9357
0.689 3.6 2450 0.9350
0.8573 3.67 2500 0.9344
1.072 3.74 2550 0.9338
0.9188 3.82 2600 0.9332
1.3385 3.89 2650 0.9327
0.9067 3.96 2700 0.9324
0.9993 4.04 2750 0.9321
0.8222 4.11 2800 0.9317
0.8129 4.19 2850 0.9315
0.7861 4.26 2900 0.9313
1.3126 4.33 2950 0.9311
0.9465 4.41 3000 0.9310
0.9444 4.48 3050 0.9309
0.5677 4.55 3100 0.9308
0.7046 4.63 3150 0.9307
1.5036 4.7 3200 0.9307
1.0087 4.77 3250 0.9307
0.6705 4.85 3300 0.9306
1.0425 4.92 3350 0.9306
0.3666 4.99 3400 0.9306

Framework versions

  • PEFT 0.10.1.dev0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.15.2