|
import torch |
|
import torch.nn as nn |
|
from typing import Optional |
|
from torch import Tensor |
|
import numpy as np |
|
from huggingface_hub import PyTorchModelHubMixin |
|
|
|
|
|
A1 = 1.340264 |
|
A2 = -0.081106 |
|
A3 = 0.000893 |
|
A4 = 0.003796 |
|
SF = 66.50336 |
|
|
|
@torch.jit.script |
|
def gaussian_encoding( |
|
v: Tensor, |
|
b: Tensor) -> Tensor: |
|
r"""Computes :math:`\gamma(\mathbf{v}) = (\cos{2 \pi \mathbf{B} \mathbf{v}} , \sin{2 \pi \mathbf{B} \mathbf{v}})` |
|
|
|
Args: |
|
v (Tensor): input tensor of shape :math:`(N, *, \text{input_size})` |
|
b (Tensor): projection matrix of shape :math:`(\text{encoded_layer_size}, \text{input_size})` |
|
|
|
Returns: |
|
Tensor: mapped tensor of shape :math:`(N, *, 2 \cdot \text{encoded_layer_size})` |
|
|
|
See :class:`~rff.layers.GaussianEncoding` for more details. |
|
""" |
|
vp = 2 * np.pi * v @ b.T |
|
return torch.cat((torch.cos(vp), torch.sin(vp)), dim=-1) |
|
|
|
|
|
def sample_b(sigma: float, size: tuple) -> Tensor: |
|
r"""Matrix of size :attr:`size` sampled from from :math:`\mathcal{N}(0, \sigma^2)` |
|
|
|
Args: |
|
sigma (float): standard deviation |
|
size (tuple): size of the matrix sampled |
|
|
|
See :class:`~rff.layers.GaussianEncoding` for more details |
|
""" |
|
return torch.randn(size) * sigma |
|
|
|
class GaussianEncoding(nn.Module): |
|
"""Layer for mapping coordinates using random Fourier features""" |
|
|
|
def __init__(self, sigma: Optional[float] = None, |
|
input_size: Optional[float] = None, |
|
encoded_size: Optional[float] = None, |
|
b: Optional[Tensor] = None): |
|
r""" |
|
Args: |
|
sigma (Optional[float]): standard deviation |
|
input_size (Optional[float]): the number of input dimensions |
|
encoded_size (Optional[float]): the number of dimensions the `b` matrix maps to |
|
b (Optional[Tensor], optional): Optionally specify a :attr:`b` matrix already sampled |
|
Raises: |
|
ValueError: |
|
If :attr:`b` is provided and one of :attr:`sigma`, :attr:`input_size`, |
|
or :attr:`encoded_size` is provided. If :attr:`b` is not provided and one of |
|
:attr:`sigma`, :attr:`input_size`, or :attr:`encoded_size` is not provided. |
|
""" |
|
super().__init__() |
|
if b is None: |
|
if sigma is None or input_size is None or encoded_size is None: |
|
raise ValueError( |
|
'Arguments "sigma," "input_size," and "encoded_size" are required.') |
|
|
|
b = sample_b(sigma, (encoded_size, input_size)) |
|
elif sigma is not None or input_size is not None or encoded_size is not None: |
|
raise ValueError('Only specify the "b" argument when using it.') |
|
self.b = nn.parameter.Parameter(b, requires_grad=False) |
|
|
|
def forward(self, v: Tensor) -> Tensor: |
|
r"""Computes :math:`\gamma(\mathbf{v}) = (\cos{2 \pi \mathbf{B} \mathbf{v}} , \sin{2 \pi \mathbf{B} \mathbf{v}})` |
|
|
|
Args: |
|
v (Tensor): input tensor of shape :math:`(N, *, \text{input_size})` |
|
|
|
Returns: |
|
Tensor: Tensor mapping using random fourier features of shape :math:`(N, *, 2 \cdot \text{encoded_size})` |
|
""" |
|
return gaussian_encoding(v, self.b) |
|
|
|
def equal_earth_projection(L): |
|
latitude = L[:, 0] |
|
longitude = L[:, 1] |
|
latitude_rad = torch.deg2rad(latitude) |
|
longitude_rad = torch.deg2rad(longitude) |
|
sin_theta = (torch.sqrt(torch.tensor(3.0)) / 2) * torch.sin(latitude_rad) |
|
theta = torch.asin(sin_theta) |
|
denominator = 3 * (9 * A4 * theta**8 + 7 * A3 * theta**6 + 3 * A2 * theta**2 + A1) |
|
x = (2 * torch.sqrt(torch.tensor(3.0)) * longitude_rad * torch.cos(theta)) / denominator |
|
y = A4 * theta**9 + A3 * theta**7 + A2 * theta**3 + A1 * theta |
|
return (torch.stack((x, y), dim=1) * SF) / 180 |
|
|
|
class LocationEncoderCapsule(nn.Module): |
|
def __init__(self, sigma): |
|
super(LocationEncoderCapsule, self).__init__() |
|
rff_encoding = GaussianEncoding(sigma=sigma, input_size=2, encoded_size=256) |
|
self.km = sigma |
|
self.capsule = nn.Sequential(rff_encoding, |
|
nn.Linear(512, 1024), |
|
nn.ReLU(), |
|
nn.Linear(1024, 1024), |
|
nn.ReLU(), |
|
nn.Linear(1024, 1024), |
|
nn.ReLU()) |
|
self.head = nn.Sequential(nn.Linear(1024, 512)) |
|
|
|
def forward(self, x): |
|
x = self.capsule(x) |
|
x = self.head(x) |
|
return x |
|
|
|
class LocationEncoder(nn.Module, PyTorchModelHubMixin): |
|
def __init__(self): |
|
super(LocationEncoder, self).__init__() |
|
self.sigma = [2**0, 2**4, 2**8] |
|
self.n = len(self.sigma) |
|
|
|
for i, s in enumerate(self.sigma): |
|
self.add_module('LocEnc' + str(i), LocationEncoderCapsule(sigma=s)) |
|
|
|
def forward(self, location): |
|
location = equal_earth_projection(location) |
|
location_features = torch.zeros(location.shape[0], 512).to(location.device) |
|
|
|
for i in range(self.n): |
|
location_features += self._modules['LocEnc' + str(i)](location) |
|
|
|
return location_features |