Srikumar26's picture
Create model.py
cb851a6 verified
import torch
import torch.nn as nn
from typing import Optional
from torch import Tensor
import numpy as np
from huggingface_hub import PyTorchModelHubMixin
# Constants
A1 = 1.340264
A2 = -0.081106
A3 = 0.000893
A4 = 0.003796
SF = 66.50336
@torch.jit.script
def gaussian_encoding(
v: Tensor,
b: Tensor) -> Tensor:
r"""Computes :math:`\gamma(\mathbf{v}) = (\cos{2 \pi \mathbf{B} \mathbf{v}} , \sin{2 \pi \mathbf{B} \mathbf{v}})`
Args:
v (Tensor): input tensor of shape :math:`(N, *, \text{input_size})`
b (Tensor): projection matrix of shape :math:`(\text{encoded_layer_size}, \text{input_size})`
Returns:
Tensor: mapped tensor of shape :math:`(N, *, 2 \cdot \text{encoded_layer_size})`
See :class:`~rff.layers.GaussianEncoding` for more details.
"""
vp = 2 * np.pi * v @ b.T
return torch.cat((torch.cos(vp), torch.sin(vp)), dim=-1)
def sample_b(sigma: float, size: tuple) -> Tensor:
r"""Matrix of size :attr:`size` sampled from from :math:`\mathcal{N}(0, \sigma^2)`
Args:
sigma (float): standard deviation
size (tuple): size of the matrix sampled
See :class:`~rff.layers.GaussianEncoding` for more details
"""
return torch.randn(size) * sigma
class GaussianEncoding(nn.Module):
"""Layer for mapping coordinates using random Fourier features"""
def __init__(self, sigma: Optional[float] = None,
input_size: Optional[float] = None,
encoded_size: Optional[float] = None,
b: Optional[Tensor] = None):
r"""
Args:
sigma (Optional[float]): standard deviation
input_size (Optional[float]): the number of input dimensions
encoded_size (Optional[float]): the number of dimensions the `b` matrix maps to
b (Optional[Tensor], optional): Optionally specify a :attr:`b` matrix already sampled
Raises:
ValueError:
If :attr:`b` is provided and one of :attr:`sigma`, :attr:`input_size`,
or :attr:`encoded_size` is provided. If :attr:`b` is not provided and one of
:attr:`sigma`, :attr:`input_size`, or :attr:`encoded_size` is not provided.
"""
super().__init__()
if b is None:
if sigma is None or input_size is None or encoded_size is None:
raise ValueError(
'Arguments "sigma," "input_size," and "encoded_size" are required.')
b = sample_b(sigma, (encoded_size, input_size))
elif sigma is not None or input_size is not None or encoded_size is not None:
raise ValueError('Only specify the "b" argument when using it.')
self.b = nn.parameter.Parameter(b, requires_grad=False)
def forward(self, v: Tensor) -> Tensor:
r"""Computes :math:`\gamma(\mathbf{v}) = (\cos{2 \pi \mathbf{B} \mathbf{v}} , \sin{2 \pi \mathbf{B} \mathbf{v}})`
Args:
v (Tensor): input tensor of shape :math:`(N, *, \text{input_size})`
Returns:
Tensor: Tensor mapping using random fourier features of shape :math:`(N, *, 2 \cdot \text{encoded_size})`
"""
return gaussian_encoding(v, self.b)
def equal_earth_projection(L):
latitude = L[:, 0]
longitude = L[:, 1]
latitude_rad = torch.deg2rad(latitude)
longitude_rad = torch.deg2rad(longitude)
sin_theta = (torch.sqrt(torch.tensor(3.0)) / 2) * torch.sin(latitude_rad)
theta = torch.asin(sin_theta)
denominator = 3 * (9 * A4 * theta**8 + 7 * A3 * theta**6 + 3 * A2 * theta**2 + A1)
x = (2 * torch.sqrt(torch.tensor(3.0)) * longitude_rad * torch.cos(theta)) / denominator
y = A4 * theta**9 + A3 * theta**7 + A2 * theta**3 + A1 * theta
return (torch.stack((x, y), dim=1) * SF) / 180
class LocationEncoderCapsule(nn.Module):
def __init__(self, sigma):
super(LocationEncoderCapsule, self).__init__()
rff_encoding = GaussianEncoding(sigma=sigma, input_size=2, encoded_size=256)
self.km = sigma
self.capsule = nn.Sequential(rff_encoding,
nn.Linear(512, 1024),
nn.ReLU(),
nn.Linear(1024, 1024),
nn.ReLU(),
nn.Linear(1024, 1024),
nn.ReLU())
self.head = nn.Sequential(nn.Linear(1024, 512))
def forward(self, x):
x = self.capsule(x)
x = self.head(x)
return x
class LocationEncoder(nn.Module, PyTorchModelHubMixin):
def __init__(self):
super(LocationEncoder, self).__init__()
self.sigma = [2**0, 2**4, 2**8]
self.n = len(self.sigma)
for i, s in enumerate(self.sigma):
self.add_module('LocEnc' + str(i), LocationEncoderCapsule(sigma=s))
def forward(self, location):
location = equal_earth_projection(location)
location_features = torch.zeros(location.shape[0], 512).to(location.device)
for i in range(self.n):
location_features += self._modules['LocEnc' + str(i)](location)
return location_features