我们提供了多样化的大模型微调示例脚本。
请确保在 LLaMA-Factory
目录下执行下述命令。
目录
使用 CUDA_VISIBLE_DEVICES
(GPU)或 ASCEND_RT_VISIBLE_DEVICES
(NPU)选择计算设备。
示例
LoRA 微调
(增量)预训练
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
指令监督微调
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
多模态指令监督微调
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yaml
DPO/ORPO/SimPO 训练
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
多模态 DPO/ORPO/SimPO 训练
llamafactory-cli train examples/train_lora/qwen2vl_lora_dpo.yaml
奖励模型训练
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
PPO 训练
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
KTO 训练
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
预处理数据集
对于大数据集有帮助,在配置中使用 tokenized_path
以加载预处理后的数据集。
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
在 MMLU/CMMLU/C-Eval 上评估
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
批量预测并计算 BLEU 和 ROUGE 分数
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
多机指令监督微调
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
使用 DeepSpeed ZeRO-3 平均分配显存
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
QLoRA 微调
基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
基于 4/8 比特 GPTQ 量化进行指令监督微调
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
基于 4 比特 AWQ 量化进行指令监督微调
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
基于 2 比特 AQLM 量化进行指令监督微调
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
全参数微调
在单机上进行指令监督微调
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
在多机上进行指令监督微调
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
多模态指令监督微调
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
批量预测并计算 BLEU 和 ROUGE 分数
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
合并 LoRA 适配器与模型量化
合并 LoRA 适配器
注:请勿使用量化后的模型或 quantization_bit
参数来合并 LoRA 适配器。
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
使用 AutoGPTQ 量化模型
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
推理 LoRA 模型
使用命令行接口
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
使用浏览器界面
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
启动 OpenAI 风格 API
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
杂项
使用 GaLore 进行全参数训练
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
使用 BAdam 进行全参数训练
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
使用 Adam-mini 进行全参数训练
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
LoRA+ 微调
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
PiSSA 微调
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
深度混合微调
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
LLaMA-Pro 微调
bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
FSDP+QLoRA 微调
bash examples/extras/fsdp_qlora/train.sh