|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- multi_news |
|
metrics: |
|
- rouge |
|
pipeline_tag: summarization |
|
base_model: slauw87/bart_summarisation |
|
model-index: |
|
- name: finetuned_multi_news_bart_text_summarisation |
|
results: |
|
- task: |
|
type: textsummarization |
|
name: Sequence-to-sequence Language Modeling |
|
dataset: |
|
name: multi_news |
|
type: multi_news |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- type: rouge |
|
value: 0.4038 |
|
name: Rouge1 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetuned_multi_news_bart_text_summarisation |
|
|
|
This model is a fine-tuned version of [slauw87/bart_summarisation](https://huggingface.co/slauw87/bart_summarisation) on the multi_news dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8952 |
|
- Rouge1: 0.4038 |
|
- Rouge2: 0.1389 |
|
- Rougel: 0.2155 |
|
- Rougelsum: 0.2147 |
|
- Gen Len: 138.7667 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| |
|
| No log | 1.0 | 15 | 2.9651 | 0.3903 | 0.134 | 0.21 | 0.2098 | 137.6 | |
|
| No log | 2.0 | 30 | 2.8952 | 0.4038 | 0.1389 | 0.2155 | 0.2147 | 138.7667 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |