metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-biopsy
results: []
vit-base-patch16-224-in21k-finetuned-biopsy
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1249
- Accuracy: 0.9682
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1332 | 1.0 | 42 | 1.0712 | 0.5494 |
0.6556 | 2.0 | 84 | 0.5742 | 0.8492 |
0.3987 | 3.0 | 126 | 0.3950 | 0.8894 |
0.2825 | 4.0 | 168 | 0.3924 | 0.8777 |
0.3662 | 5.0 | 210 | 0.3622 | 0.8861 |
0.2218 | 6.0 | 252 | 0.2706 | 0.9246 |
0.2236 | 7.0 | 294 | 0.2283 | 0.9347 |
0.2224 | 8.0 | 336 | 0.2367 | 0.9313 |
0.1754 | 9.0 | 378 | 0.2139 | 0.9296 |
0.1707 | 10.0 | 420 | 0.1829 | 0.9497 |
0.1619 | 11.0 | 462 | 0.2172 | 0.9464 |
0.1547 | 12.0 | 504 | 0.1960 | 0.9380 |
0.1213 | 13.0 | 546 | 0.1484 | 0.9581 |
0.1388 | 14.0 | 588 | 0.1689 | 0.9581 |
0.1009 | 15.0 | 630 | 0.1494 | 0.9581 |
0.124 | 16.0 | 672 | 0.1564 | 0.9581 |
0.1078 | 17.0 | 714 | 0.1728 | 0.9514 |
0.102 | 18.0 | 756 | 0.1669 | 0.9447 |
0.1006 | 19.0 | 798 | 0.1405 | 0.9581 |
0.0791 | 20.0 | 840 | 0.1179 | 0.9665 |
0.0694 | 21.0 | 882 | 0.1424 | 0.9631 |
0.0627 | 22.0 | 924 | 0.1224 | 0.9665 |
0.0883 | 23.0 | 966 | 0.1602 | 0.9447 |
0.074 | 24.0 | 1008 | 0.1315 | 0.9615 |
0.0708 | 25.0 | 1050 | 0.1331 | 0.9631 |
0.06 | 26.0 | 1092 | 0.1191 | 0.9665 |
0.083 | 27.0 | 1134 | 0.1583 | 0.9531 |
0.0584 | 28.0 | 1176 | 0.1348 | 0.9564 |
0.0627 | 29.0 | 1218 | 0.1270 | 0.9564 |
0.0627 | 30.0 | 1260 | 0.1411 | 0.9564 |
0.038 | 31.0 | 1302 | 0.1208 | 0.9665 |
0.0569 | 32.0 | 1344 | 0.1587 | 0.9514 |
0.0502 | 33.0 | 1386 | 0.1501 | 0.9497 |
0.0464 | 34.0 | 1428 | 0.1508 | 0.9615 |
0.0317 | 35.0 | 1470 | 0.1309 | 0.9631 |
0.0552 | 36.0 | 1512 | 0.1372 | 0.9598 |
0.031 | 37.0 | 1554 | 0.1258 | 0.9598 |
0.0383 | 38.0 | 1596 | 0.1249 | 0.9682 |
0.036 | 39.0 | 1638 | 0.1312 | 0.9665 |
0.0405 | 40.0 | 1680 | 0.1207 | 0.9665 |
0.0343 | 41.0 | 1722 | 0.1233 | 0.9648 |
0.0325 | 42.0 | 1764 | 0.1286 | 0.9631 |
0.0293 | 43.0 | 1806 | 0.1135 | 0.9682 |
0.0306 | 44.0 | 1848 | 0.1258 | 0.9615 |
0.0267 | 45.0 | 1890 | 0.1261 | 0.9648 |
0.0338 | 46.0 | 1932 | 0.1209 | 0.9665 |
0.0213 | 47.0 | 1974 | 0.1157 | 0.9665 |
0.0285 | 48.0 | 2016 | 0.1203 | 0.9631 |
0.0287 | 49.0 | 2058 | 0.1240 | 0.9648 |
0.0183 | 50.0 | 2100 | 0.1224 | 0.9665 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1