layoutlm_model / README.md
Mallikarjun49's picture
End of training
c5d7750
metadata
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm_model
    results: []

layoutlm_model

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6891
  • Answer: {'precision': 0.020451339915373765, 'recall': 0.03584672435105068, 'f1': 0.026044005388414906, 'number': 809}
  • Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}
  • Question: {'precision': 0.12158341187558906, 'recall': 0.12112676056338029, 'f1': 0.1213546566321731, 'number': 1065}
  • Overall Precision: 0.0637
  • Overall Recall: 0.0793
  • Overall F1: 0.0707
  • Overall Accuracy: 0.3724

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8693 1.0 10 1.6891 {'precision': 0.020451339915373765, 'recall': 0.03584672435105068, 'f1': 0.026044005388414906, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.12158341187558906, 'recall': 0.12112676056338029, 'f1': 0.1213546566321731, 'number': 1065} 0.0637 0.0793 0.0707 0.3724

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1