|
import argparse |
|
import torch |
|
import os |
|
import json |
|
from tqdm import tqdm |
|
import shortuuid |
|
from ChatUniVi.constants import * |
|
from ChatUniVi.conversation import conv_templates, SeparatorStyle |
|
from ChatUniVi.model.builder import load_pretrained_model |
|
from ChatUniVi.utils import disable_torch_init |
|
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
from PIL import Image |
|
import math |
|
from abc import ABC |
|
import numpy as np |
|
import jsonlines |
|
|
|
|
|
def get_acc(file): |
|
acc, num = 0, 0 |
|
yes, no, fail = 0, 0, 0 |
|
tp, fp, fn, tn = 0, 0, 0, 0 |
|
|
|
with open(file, "r", encoding="utf8") as f: |
|
for item in jsonlines.Reader(f): |
|
num += 1 |
|
if "Yes" in item["text"] or "yes" in item["text"]: |
|
yes += 1 |
|
if "Yes" in item["label"] or "yes" in item["label"]: |
|
acc += 1 |
|
tp += 1 |
|
else: |
|
fp += 1 |
|
|
|
elif "No" in item["text"] or "no" in item["text"]: |
|
no += 1 |
|
if "No" in item["label"] or "no" in item["label"]: |
|
acc += 1 |
|
tn += 1 |
|
else: |
|
fn += 1 |
|
else: |
|
fail += 1 |
|
|
|
result = { |
|
"acc": acc / num, |
|
"yes": yes / num, |
|
"no": no / num, |
|
"fail": fail / num, |
|
"precision": tp / (tp + fp), |
|
"recall": tp / (tp + fn), |
|
} |
|
result["F1-score"] = 2 * result["precision"] * result["recall"] / (result["precision"] + result["recall"]) |
|
print("\n========================================================================") |
|
print(file) |
|
print(result) |
|
print("========================================================================\n") |
|
return result |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
class LogitsProcessor(ABC): |
|
"""Abstract base class for all logit processors that can be applied during generation.""" |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
"""Torch method for processing logits.""" |
|
raise NotImplementedError( |
|
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." |
|
) |
|
|
|
|
|
def eval_model(args): |
|
|
|
disable_torch_init() |
|
model_path = os.path.expanduser(args.model_path) |
|
model_name = "ChatUniVi" |
|
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) |
|
|
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) |
|
if mm_use_im_patch_token: |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
vision_tower = model.get_vision_tower() |
|
if not vision_tower.is_loaded: |
|
vision_tower.load_model() |
|
image_processor = vision_tower.image_processor |
|
|
|
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
answers_file = os.path.expanduser(args.answers_file) |
|
os.makedirs(os.path.dirname(answers_file), exist_ok=True) |
|
ans_file = open(answers_file, "w") |
|
for line in tqdm(questions): |
|
try: |
|
idx = line["question_id"] |
|
image_file = line["image"] |
|
qs = line["text"] |
|
label = line["label"] |
|
|
|
cur_prompt = qs |
|
if model.config.mm_use_im_start_end: |
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs |
|
else: |
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
|
|
image = Image.open(os.path.join(args.image_folder, image_file)) |
|
|
|
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
if args.answer_prompter: |
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=image_tensor.unsqueeze(0).half().cuda(), |
|
do_sample=True, |
|
temperature=args.temperature, |
|
top_p=args.top_p, |
|
num_beams=args.num_beams, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria] |
|
) |
|
|
|
input_token_len = input_ids.shape[1] |
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
|
|
outputs_reasoning = outputs |
|
input_ids = tokenizer_image_token(prompt + outputs_reasoning + ' The answer is ', tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
|
|
else: |
|
outputs_reasoning = "" |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=image_tensor.unsqueeze(0).half().cuda(), |
|
do_sample=True, |
|
temperature=args.temperature, |
|
top_p=args.top_p, |
|
num_beams=args.num_beams, |
|
output_scores=True, |
|
return_dict_in_generate=True, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria] |
|
) |
|
|
|
scores = output_ids.scores[0][0].to(torch.float32) |
|
label_score = [] |
|
candidates = ["yes", "Yes", "no", "No"] |
|
for can in candidates: |
|
can_id = tokenizer.encode(can)[-1] |
|
label_score.append(scores[can_id].item()) |
|
outputs = candidates[np.argmax(label_score)] |
|
|
|
ans_id = shortuuid.uuid() |
|
ans_file.write(json.dumps({"question_id": idx, |
|
"prompt": cur_prompt, |
|
"outputs_reasoning": outputs_reasoning + ' The answer is ' + outputs, |
|
"text": outputs, |
|
"label": label, |
|
"answer_id": ans_id, |
|
"model_id": model_name, |
|
"metadata": {}}) + "\n") |
|
ans_file.flush() |
|
except Exception as e: |
|
print(f"Error processing image file '{image_file}': {e}") |
|
ans_file.close() |
|
get_acc(answers_file) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--image-folder", type=str, default="") |
|
parser.add_argument("--question-file", type=str, default="tables/question.jsonl") |
|
parser.add_argument("--answers-file", type=str, default="answer.jsonl") |
|
parser.add_argument("--conv-mode", type=str, default="simpleqa") |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--temperature", type=float, default=0.2) |
|
parser.add_argument("--top_p", type=float, default=None) |
|
parser.add_argument("--num_beams", type=int, default=1) |
|
parser.add_argument("--model_use", type=str, default="BASE") |
|
parser.add_argument("--answer-prompter", action="store_true") |
|
args = parser.parse_args() |
|
|
|
eval_model(args) |
|
|