metadata
language:
- ko
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
base_model: openai/whisper-small
datasets:
- Marcusxx/gwanju
model-index:
- name: gwanju_small2_model
results: []
gwanju_small2_model
This model is a fine-tuned version of openai/whisper-small on the Marcusxx/gwanju dataset. It achieves the following results on the evaluation set:
- Loss: 0.5890
- Cer: 213.0841
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 25000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.5224 | 0.2964 | 1000 | 0.5003 | 164.2695 |
0.4399 | 0.5928 | 2000 | 0.4550 | 440.4495 |
0.4331 | 0.8892 | 3000 | 0.4277 | 151.5039 |
0.2926 | 1.1855 | 4000 | 0.4221 | 83.3523 |
0.3307 | 1.4819 | 5000 | 0.4162 | 221.7744 |
0.2858 | 1.7783 | 6000 | 0.4099 | 231.1391 |
0.1883 | 2.0747 | 7000 | 0.4122 | 71.8191 |
0.1794 | 2.3711 | 8000 | 0.4186 | 64.8286 |
0.1957 | 2.6675 | 9000 | 0.4146 | 147.6546 |
0.1752 | 2.9638 | 10000 | 0.4173 | 90.3213 |
0.1158 | 3.2602 | 11000 | 0.4346 | 187.8218 |
0.1216 | 3.5566 | 12000 | 0.4342 | 112.4640 |
0.107 | 3.8530 | 13000 | 0.4401 | 101.8964 |
0.0679 | 4.1494 | 14000 | 0.4593 | 153.6522 |
0.0647 | 4.4458 | 15000 | 0.4712 | 91.6056 |
0.0646 | 4.7421 | 16000 | 0.4732 | 97.5377 |
0.0289 | 5.0385 | 17000 | 0.4958 | 170.3914 |
0.0343 | 5.3349 | 18000 | 0.5112 | 160.5715 |
0.0319 | 5.6313 | 19000 | 0.5129 | 147.4355 |
0.0344 | 5.9277 | 20000 | 0.5226 | 129.4900 |
0.018 | 6.2241 | 21000 | 0.5561 | 181.4288 |
0.0179 | 6.5205 | 22000 | 0.5620 | 191.2249 |
0.0177 | 6.8168 | 23000 | 0.5668 | 190.5664 |
0.0086 | 7.1132 | 24000 | 0.5841 | 210.2615 |
0.0085 | 7.4096 | 25000 | 0.5890 | 213.0841 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1