gwanju_small2_model / README.md
Marcusxx's picture
Upload processor
38bdc6c verified
metadata
language:
  - ko
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - Marcusxx/gwanju
model-index:
  - name: gwanju_small2_model
    results: []

gwanju_small2_model

This model is a fine-tuned version of openai/whisper-small on the Marcusxx/gwanju dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5890
  • Cer: 213.0841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 25000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
0.5224 0.2964 1000 0.5003 164.2695
0.4399 0.5928 2000 0.4550 440.4495
0.4331 0.8892 3000 0.4277 151.5039
0.2926 1.1855 4000 0.4221 83.3523
0.3307 1.4819 5000 0.4162 221.7744
0.2858 1.7783 6000 0.4099 231.1391
0.1883 2.0747 7000 0.4122 71.8191
0.1794 2.3711 8000 0.4186 64.8286
0.1957 2.6675 9000 0.4146 147.6546
0.1752 2.9638 10000 0.4173 90.3213
0.1158 3.2602 11000 0.4346 187.8218
0.1216 3.5566 12000 0.4342 112.4640
0.107 3.8530 13000 0.4401 101.8964
0.0679 4.1494 14000 0.4593 153.6522
0.0647 4.4458 15000 0.4712 91.6056
0.0646 4.7421 16000 0.4732 97.5377
0.0289 5.0385 17000 0.4958 170.3914
0.0343 5.3349 18000 0.5112 160.5715
0.0319 5.6313 19000 0.5129 147.4355
0.0344 5.9277 20000 0.5226 129.4900
0.018 6.2241 21000 0.5561 181.4288
0.0179 6.5205 22000 0.5620 191.2249
0.0177 6.8168 23000 0.5668 190.5664
0.0086 7.1132 24000 0.5841 210.2615
0.0085 7.4096 25000 0.5890 213.0841

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1