bert-model-english / README.md
MarioPenguin's picture
add model
0c41fe9
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: bert-model-english
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bert-model-english
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1408
- Train Sparse Categorical Accuracy: 0.9512
- Validation Loss: nan
- Validation Sparse Categorical Accuracy: 0.0
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:|
| 0.2775 | 0.8887 | nan | 0.0 | 0 |
| 0.1702 | 0.9390 | nan | 0.0 | 1 |
| 0.1300 | 0.9555 | nan | 0.0 | 2 |
| 0.1346 | 0.9544 | nan | 0.0 | 3 |
| 0.1408 | 0.9512 | nan | 0.0 | 4 |
### Framework versions
- Transformers 4.16.2
- TensorFlow 2.7.0
- Datasets 1.18.3
- Tokenizers 0.11.0